
Chapter 6
Expressions and Equations

The relevant standard for this Chapter is

Apply and extend previous understandings of arithmetic to algebraic expressions. 6.EE.

The progression in the school curriculum, from arithmetic to algebra, is spread out over the grades 6-9. At first
(and this begins in the primary grades) students are asked to perform arithmetic operations (such as 5 + 6, and
then 5 × 6) and then combining operations (as in 3 × 2 + 4 × 5). Students learn that 3 × 2 + 3 × 5 = 3 × 7, and
ultimately learn to identify the properties of arithmetic that permit these combinations. All of this can be put into
the category of manipulation of arithmetic or numeric expressions.

Along the way, students begin to solve problems, not just of the sort “how much is 3+5?” but also “what has to be
added to 3 in order to get 5?” This question is written as “3+? = 5” where the question mark may be replaced by a
space or a box. This formulation is a prelude to algebraic notation, and in grade 5, it is suggested to use a symbol
in place of the question mark, space or box, writing 3 + A = 5, where “A” stands for “answer.”

In grade 6 we begin to use letters systematically to represent unknowns, and introduce students to the rules of
arithmetic; for example, those that allow us to transform 3 + A = 5 into A = 5 − 3, and then do the computation
to get the solution, 2. Thus, in a natural progression, calculations lead to problems, leading to the introduction of
unknowns represented by letters, to the rules for solving for unknowns.

Until grade 6, students have been doing this work intuitively. The goal of this chapter is to develop understanding,
in a structural way, what they have been doing, in order to achieve greater flexibility in thinking and application of
processes. In this chapter, we formally describe the process in solving one step algebraic equations (specifically
of the form x + p = q and px = q.

We get there by detailing the transition from numeric expressions (such as 3(2 + 7)) to algebraic expressions (such
as 3(x + 7)), as a prelude to understanding the mathematics of grades 7 and 8. The development of this material
in the workbook is a little different from the sequence taken here in that the material is developed in a way that
moves gradually from what students already know how to do to understanding what it is they are doing. Here, in
the foundations we present the material as the objective to which the pedagogy is heading.

The major transition is that of using symbols as unknowns to using them as variables. This is a change from
interpreting “x” as a number to be determined to a placeholder into which any number may be put in order to
understand the behavior of the expression as that number is varied.

Students have seen variables in equations, particularly in Chapter 5, where certain formulas are introduced: A =

LW, V = LWH and so forth, but the text has only hinted at the possibility of their variation. Here, for example, L
and W vary so as to produce a specific value of A. There are many rectangles of area A, and now we shift interest
to the relationship of L and W as they vary.



This chapter should be seen as a broad overview of the way algebra is going to be used in subsequent grades.
The idea is to acquaint students to what they are doing, and to broaden their understanding of these processes,
something that will not be completed in grade 6. The idea is to expand their minds; that expansion of knowledge
will accrue slowly over the subsequent years.

In section 1 we review numeric expressions from a structural perspective. Numeric (or arithmetic) expressions are
viewed as a code for an computation, i.e., 3 + (5 − 1) encodes these two steps:

1) Subtract 1 from 5; 2) Add 3 to the result of step 1.

Two numeric expressions are said to be equivalent when the results of the computation they describe produce the
same number. Another definition of equivalence is that we can move from one expression to the other by applying
the rules of arithmetic. For a summary and discussion of these rules, see Chapter 0: Fluency. Indeed, we should
view Chapters 0 and 6 as the bookends for the mathematics of grade 6. These two definitions of equivalence are
to be viewed as interchangeable, using whichever is most convenient. For example, the expression 3 + (5 − 1) is
equivalent to the expression 4 + (2 + 1) since they both produce the result 7. We also can get from 3 + (5 − 1) to
4 + (2 + 1) by calculating 5 − 1 = 4, and then replacing 3 by 2+1, and finally, using the commutative property.

An algebraic expression is, in structure, the same as a numeric expression, except that now some numbers are
represented by letters. These are thought of unknowns, in the sense that placing conditions on the expression
allows us to solve for the value of the unknown. For example, 4 + (x + 1) is an algebraic expression; if we require
it to produce the value 7, then we solve using the rules of arithmetic, to find that x must be 2.

But also, we can look at x as a variable, and we want to understand how 4 + (x + 1) varies as x varies. A simple
observation is that 4 + (x + 1) will increase as x increases. A more subtle observation (to be made in grade 8) is
that a change from x to x + c produces a change in 4 + (x + 1) by the same amount.

Two algebraic expressions are equivalent if, every replacement of the unknowns by numbers produces equivalent
numeric expressions. We can show that equivalence fails by finding just one such substitution which gives different
answers. But to demonstrate equivalence, we have to show that for every substitution, we get the same answer.
Since that is impossible in finite time, we employ the alternative definition: two expressions are equivalent if there
is a sequence of rules of arithmetic that take one to the other. For example, 4 + (x + 1) is equivalent to 3 + (x + 2),
which we can see by removing parentheses and adding 4 + 1 = 5 in the first, and 3 + 2 = 5 in the second, so
that both expressions are equivalent to 5 + x. Testing as many substitutions for x as we can still won’t show the
equivalence, because there are an infinite number of choices for x.

It is a fact (that will not be explored until grade 8) that to show equivalence of two linear algebraic expressions,
we need only show that the give the same value for just two different substitutions of numbers for the unknown.
There is a good chance that, while doing problems on equivalence, students may discover this fact.

In section 2, we introduce and discuss the concept of simplification. We have already seen one operation, that of
combining terms (as in 3 + x + 2 = 5 + x). Here, the word combine refers to addition. In an expression such
as 5 × (x × 2), we combine by replacing this by 10 × x; here combine refers to multiplication. To emphasize the
distinction between addition and multiplication, we begin by distinguishing the words terms (addends) and factors
(multipliers). To further drive this home, algebraic expressions are represented by algebra tiles, where the word
“like” is made evident.

Nest we discuss the distributive property as the second most important mechanism for simplification. “Order of
operations” is a driving force here, without actually mentioning it. That is, to calculate 2(x + 6) + 2(x − 5) we first
use the distributive property (getting 2x + 12 + 2x − 5) and then combine like terms (getting 4x + 17).

Section 2 ends with evaluating expressions and writing algebraic expressions to model real world problems.

The instruction “simplify” has to be understood in terms of the desired end result. For example, if we are dis-
cussing a rectangle whose length is twice as long as its width, we’ll write down the formula for area as A = w(2w),
where w is the width. This formula is as simple as it can be if we are intent on showing the relation of the width
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and length of the rectangle. But if we want to find area in terms of width, we simplify to A = 2w2. Here we are
introducing the idea of function without mentioning it. The language used here: “in terms of” will become, in
grade 8, “as a function of.”

In section 3, we discuss this question: given two algebraic expressions, if they are not equivalent, for what sub-
stitutions of the variables (if any) do they give the same result? This set of values is called the solution set for
the problem. This definition of equation (meaning, set two expressions equal to each other) becomes increasingly
significant throughout the subsequent three grades. In grade 6 we consider only the simplest of these possibilities:
those where one expression is a number, and the other is of the form x + p or px. What is important here is the
meaning of equation and the technique of its solution. In grade 6, the technique of solution is one-step: in one case
we subtract, and in the other we divide. All of the rest of algebra (that is, linear algebra) is based on combinations
of these two operations. In grade 6, we want to emphasize the essential nature: to solve x + p = q, subtract p from
both sides; to solve px = q, divide by p on both sides (where p , 0).

Finally, we turn to inequalities, for which the preceding paragraph applies; but the answer will be expressed as an
interval, and not just a single number.

The fact that the solution to an equation is a number, but the solution to an inequality is an interval (in general),
can be an issue for students.

This relation, that the solution to an equation is a single number, while the solution to an inequality is an interval
of numbers, is easy for a formalist: the same set of rules apply except that the form of the answer is different. For
future work, it is important that students’ understanding goes deeper into the difference of objective, despite the
similarity of methods.

Section 1. The Structure of Numeric and Algebraic Expressions

Write, read, and evaluate expressions in which letters stand for numbers. 6.EE.2.

This section transitions students from numeric expressions (with which they have worked previously) to algebraic
expressions. To facilitate this change we start with a review of numeric expressions. In particular, we want to
emphasize that algebraic expressions are the same as numeric, except that some numbers are “unknown.”

Numeric Expressions

The important building block in algebra is the idea of an expression. The term expression means a “phrase that
makes sense” made up of numbers, letters, and operations. A numeric expression is made up of numbers and
arithmetic operations (such as addition, subtraction, multiplication, division, etc.).

Examples of numeric expressions are the first three below:

a) 5 · 4 + 3, b) (27/9)/2, c) 72 − 6 · 3 · 2 + 9 d) 5 + ÷4 − 3 e) 7 2 +

Numeric expressions are to be interpreted as a set of instruction to perform a multi-step arithmetic computation.
This implies that there is a syntax to be understood. It is not a good idea to write down and exercise the rules of
this syntax (just as in grade 2 one should not perseverate on the rules of grammar), but it is important to direct
students to an intuitive understanding. For example, a) above tells us that multiplication precedes addition, so
5 · 4 + 3 directs us to multiply 5 by 4 and then add 3; and not to add 4 and 3 and then multiply by 5. The latter
instruction involves parentheses: 5 · (4 + 3) tells us to first add 4 and 3, and then multiply by 5. As this illustrates, a
numerical expression is not to be read from left to right as a set of instructions, but instead the parentheses indicate
the way to be read. So, b) is read as “divide 27 by 9; then divide the result by 2.” On the other hand, the expression
27/(9/2), instructs us to divide 9 by 2, and then divide 27 by that result.
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It is through practice that students learn how to read them as a list of instructions. It might be useful at this time
for students to use calculators to practice transforming numeric expressions into calculations. In this activity, the
role of parentheses is significant, and time should be taken to understand how parentheses help with the order of
operations. For example, consider these three expressions as three instructions for computation:

(3 + 5) · 6 3 + (5 · 6) 3 + 5 · 6 .

In order of operations, those within parentheses are to be done first. So, the first expression instructs: “add 3
and 5, then multiply by 6. The second expression instructs: “multiply 5 and 6, then add 3 to the result.” The
third expression is ambiguous: do we perform the addition first, or the multiplication? This ambiguity is resolved
by the rule that, once parentheses have been observed, multiplications take precedence over addition. So, the
third expression should be interpreted as the second. Nevertheless, parentheses always clarify ambiguities, so the
second expression is preferable to the third. In grade 6 it is important to start to understand the conversion of an
expression into a set of computational instructions, exploring the ambiguities that might arise.

As another illustration, b) above could have been written as 27/9/2 or as 27 ÷ 9 ÷ 2, without parentheses, and the
understanding is this: first divide 27 by 9 and then by 2. However, the student might read the instructions from
right to left, and interpret 27÷ 9÷ 2 as 27÷ (9÷ 2) Although this is not likely, keep in mind that that interpretation
is possible., and judicious use of parentheses can avoid confusion.

The last two expressions in the display above are not numeric expressions because they do not make sense. The
reason these do not make sense is that most arithmetic operators require two inputs. Statement d) has too many
operations between the 5 and 4. while e) does have two numbers and an operation but the operation is not between
the two numbers.

Let’s take another look at c) 72 − 6 · 3 · 2 + 9 once again. This is not to be confused with

(72 − 6) · 3 · 2 + 9 or 72 − 6 · 3 · (2 + 9).

In an expression with parentheses, the calculations inside the parentheses should be completed first. If there are
no parentheses, then the expression is to be viewed as a sum of terms, and the multiplications indicated in the
individual terms are to be completed first. So, in 72 − 6 · 3 · 2 + 9, we first compute 72 = 49, 6 · 3 · 2 = 36 and
replace the expression by 49 − 36 + 9, and then perform the indicated subtraction and addition to get 22.

Numeric expressions arise in many common situations. If a person has a job that pays $8 per hour and he/she
works for 6 hours in one day, we can create a numeric expression to model the amount he/she will be paid: 8 + 8
+ 8 + 8 + 8 + 8. If someone wants to find the perimeter of a rectangle of width 5 feet and length 4 feet, it can be
done by adding the lengths going around the figure: 5 + 4 + 5 + 4 feet. For many numeric expressions, we can say
the same thing just written in a different way. For example, using the fact that repeated addition is multiplication,
we could rewrite 8 + 8 + 8 + 8 + 8 + 8 as 6 · 8 . Here we have used “·” to represent multiplication (rather than
the symbol “×” to which students may be accustomed) because it will become the predominant way of indicating
the operation of multiplication. Since 6 · 8 = 48 represents the amount paid for the day’s work, we would express
this with the proper units of $48. For the perimeter problem, we could have recognized that the perimeter of a
rectangle will be the sum of twice the width and twice the length: 2 · 5 + 2 · 4, which can be evaluated as 18,
meaning 18 feet. That way, the person will know how much material to purchase in order to complete the project
(perhaps fence for a dog run). Examples 8 and 9 further illustrate this conversion of a context to an expression.

Example 1. Evaluate these numeric expressions.

a) 5 + 3 b) 5 · 3 c) 2 · (5 + 3) d)
3
4

+
(3
5
)2;

that is, perform the arithmetic operations as indicated.

Solution. Here we want to stress the order of operations. For a) and b) there is no issue: there is only one
operation to perform, and so we get the answers:

a) 8 b) 15 .
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In c) there are two operations: a multiplication and an addition. We can’t do the multiplication first, for to do that,
we have to know the result of 5 + 3. So, we add first: 5 + 3 = 8, and then we multiply, getting the answer

c) 2 · (5 + 3) = 2 · 8 = 16 .

Of course, we could have used the distributive property of multiplication over addition first (see appendix), leading
to this calculation:

c) 2 · (5 + 3) = 2 · 5 + 2 · 3 = 10 + 6 = 16.

For d) we have these operations: an addition, two divisions and a squaring. If using a calculator, this is easy; but
let’s look at what the calculator does. First, it clears the parentheses, so squares 3/5 to get 9/25. Then it does the
division of 3 by 4, replacing the results by decimals, and finally the addition:

3
4

+
9
25

= 0.75 + 0.36 = 1.11 =
111
100

.

The question arises, “How do we know when two expressions, A and B, are equivalent?” One answer uses the
understanding of an expression as a computation, a sequence of operations to be performed. We’ll say that A and
B are equivalent numeric expressions if they compute the same number.

Example 2. Of the following expressions, which are equivalent?

a) [2 × (3 + (5 × 6)] ÷ 6 b) (40 + 15) ÷ 5 c) 25 + 25 + 25 d) 20 + 30 + 3 × 10 − 5

Solution. a) computes to 11, b) computes to 11, c) computes to 75 and d) computes to 75. Therefore, a) and b)
are equivalent expressions as are c) and d).

A rule of arithmetic is a way of transforming one expression into another which is equivalent to the first. For
example, the expression 5 + 3 · (2 + 1) is equivalent to 5 + 3 · 3, because 2 + 1 = 3, and this is equivalent to 5 + 9
since 3 · 3 = 9, and so forth.

The rules of arithmetic are already understood by the students, but not yet codified. In the Fluency chapter,
we provided a discussion of the rules of arithmetic. The important fact is this: two numerical expressions are
equivalent if one can be transformed into the other by a sequence of rules of arithmetic.

For example, because of the commutative property of addition, the expression 5 + 4 + 5 + 4 is equivalent to 5
+ 5 + 4 + 4 (note that the two middle addends “switched places”). By the definition of multiplication, 5 + 5 is
the same as 2 groups of 5, namely 2 · 5 and similar reasoning transforms 4 + 4 to 2 · 4. Therefore, in a series
of mathematically valid steps, we can move from 5 + 4 + 5 + 4 to 2 · 5 + 2 · 4 so these numeric expressions are
equivalent. We could also go a step further, using the distributive property: 2 · 5 + 2 · 4 is equivalent to 2 · (5 + 4).
Of course, we could also do the calculations and observe all three are equivalent for they all compute to 18.

Example 3: Kay purchases and downloads four songs for $1.50 each and three movies for $5.00 each. Write two
different numeric expressions for how much Kay spent.

Solution. There are many correct answers, including the following: 1.5 + 1.5 + 1.5 + 1.5 + 5 + 5 + 5, 4 · 1.5 +

5 + 5 + 5, 4(1.5) + 3(5), 6 + 15. Note that each of these expressions calculates to 21, meaning $21.

Algebraic Expressions and Equivalence

Write expressions that record operations with numbers and with letters standing for numbers. For example, express
the calculation “Subtract y from 5” as 5 − y. 6.EE.2a.

An algebraic expression is the same as an arithmetic expression, except that some of the entries are letters repre-
senting numbers. One way of viewing this is that an algebraic expression is a numeric expression for which some
of the numbers are unknown.
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As students gain fluency with numeric expressions, they transition to the more abstract algebraic expressions. In
addition to using numbers and operations that make sense (as in a numeric expression), algebraic expressions
also involve other symbols that each represent an unknown quantity or a measure that can vary (take on many
possible values) called a variable. Common symbols include letters such as x, y, s, or n. Some examples of valid
algebraic expressions include 3+ x, 2y−1, s2, πr2, and n(n+1)/2. While algebra is usually thought of as secondary
mathematics, examples of algebraic thinking underlies many of the tasks of elementary mathematics. When a first
grade student solves the problem 3 + � = 9, he or she is actually using algebraic concepts by letting a symbol
stand for an unknown value. Here the symbol was � but it could have easily been named x.

Evaluate expressions at specific values of their variables. 6.EE.2.
Include expressions that arise from formulas used in real world problems. Perform arithmetic operations, includ-
ing those involving whole number exponents, in the conventional order when there are no parentheses to specify a
particular order (Order of Operations). For example, use the formulas V = s3 and A = 6s2 to find the volume and
surface area of a cube with sides of length s = 1

2 . 6.EE.2c

Example 4. Here are some algebraic expressions involving the unknowns x and y:

i) 2 + 3x ii) 6 − (x + 1) iii) x + 2y iv) xy.

Evaluate these expressions for each set of values of the variables x and y:

x 0 2 2.5 3 5
y 2 1 0 3 4

Of course, the y values are not relevant for expressions i) and ii).

Solution.

i) x Value ii) x Value iii) x y Value iv) x y Value
0 2 0 5 0 2 4 0 2 0
2 8 2 3 2 1 4 2 1 2
2.5 9.5 2.5 2.5 2.5 0 2.5 2.5 0 0
3 11 3 2 3 3 9 3 3 9
5 17 5 0 5 4 13 5 4 20

Example 5. Here are some algebraic formulas from geometry (Chapter 5) involving the unknowns a, b and c:

i) A = ab ii) V = ab2 iii) W =
1
2

(a + b)c.

Evaluate these expressions for each set of values of the variables a, b, c:

a 5 1 3 3.5 4
b 8 6 1.5 1.5 4.5
c 2 2.5 3 4 5

Once again, the c values are not relevant for parts i) and ii).

Solution.

a b c A V W
5 8 2 40 320 13
1 6 2.5 6 36 8.75
3 1.5 3 4.55 6.75 6.75
3.5 1.5 4 5.25 7.875 10
4 4.5 5 18 81 21.25
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Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of
which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they
name the same number regardless of which number y stands for. 6.EE.4

As with numeric expressions, algebraic expressions are equivalent when they mean the same thing. Recall that two
numeric expressions are equivalent if they both prescribe a sequence of operations that leads to the same number.
Since an algebraic expression becomes a numeric expression when we replace all unknowns by numbers, surely
we want equivalent algebraic expressions to give, upon any such substitution, equivalent numeric expressions.
Otherwise said, two algebraic expressions are equivalent if, for every substitution of numbers for the unknowns, the
computations so defined produce the same numbers. For a moment, let’s look ahead to grade 8, where the concept
of function is introduced. In that context, this definition of equivalence comes down to: the two expressions
defining the same function.

It is impossible to verify the condition “for every substitution of numbers for unknowns . . . ,” for there are infinitely
many such substitutions. Fortunately, there is a workable alternative: we can make the test of equivalence of
algebraic expressions by the rules of arithmetic, as we did for numeric expressions. A rule of arithmetic transforms
an expression, numeric or algebraic, into an equivalent expression.

More precisely, two algebraic expressions, A and B, are equivalent if expression B may be arrived at by applying
rules of arithmetic to expression A. To illustrate: the algebraic expression 3 + x is equivalent to the expression
x + 3 because of the commutative property of addition. In brief, these are the rules of arithmetic.

Algebraic Properties of Arithmetic

Commutative Property

Additive: Changing the order of terms in an addition problem does not change the sum.

A + B = B + A.

Multiplicative: Changing the order of the factors in an multiplication problem does not
change the product.

A × B = B × A.

Associative Property

Additive: You can group addends in different ways to add:

A + (B + C) = (A + B) + C.

Multiplicative: You can group factors in different ways to multiply:

A × (B ×C) = (A × B) ×C.

Distributive Property

When you multiply a sum (or difference) by a number, you multiply each term in the sum
or difference by that number.

A × (B + C) = A × B + A ×C.

The point of making explicit these properties (or rules) of arithmetic is that they are to be used in deciding upon the
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equivalence of expressions. The rule is this: if we change an expression to another via one of these properties, we
arrive at an equivalent expression. Of course, if we have two expressions and want to decide whether or not they
are equivalent, if we fail to find a sequences of applications of the properties, we have not shown the inequivalence.
But, the definition of equivalence is easier to apply: we need to just find one number whose substitution for the
unknown in each expression produces different answers.

Example 6. Of these pairs of expressions, explain the equivalence (or inequivalence) of the pair.

a) 2x + 1 and 2(x + 1), b) 3(x − 2) and 3x − 6, c) 2x + 1 and 2x + 3,

d) y(y − 1) and y(1 − y), e) 2x − 3 − 2(x − 3) and 0.

Solution. a) The use of parenthesis is incorrect. In the first case we add 1 to 2x, and in the second case, we
add one to x and then multiply by 2. These are not the same operation, so we presume that the expressions are
inequivalent. Try x = 0: the first gives 1 and the second, 2. In fact there are no numbers to be substituted to
produce the same result.

b) We can use the distributive property to free the first expression of parentheses: 3(x − 2) = 3 · x − 3 · 2 = 3x − 6.
The expressions are equivalent.

c) The expressions are clearly inequivalent, since addition of 1 to an expression (in this case 2x) is not the same as
adding 3. Of course, we need only have shown that the two expressions give different results when 0 is substituted
for x. Indeed substitution of any number for x gives inequivalent numeric expressions.

Suppose instead that we ask if the expressions 2x + 1 and x + 3 are equivalent. A respondent may mistake 2x for
2+ x and say,“yes, they are equivalent because 2+1=3.” Pointing out the mistake doesn’t show that the expressions
are inequivalent: we still have to show that there are numerical substitutions that give different answers. Our
respondent, by chance, substitutes 2 for x and says, “Aha, 2 × 2 + 1 = 2 + 3! In that case, the student should try
another number, and as it turns out, for any choice of number a, that is different from 2, 2a + 1 , a + 3.

d) The expressions look different, so start with the assumption that they are inequivalent. In fact one is the
opposite of the other. The only number which is its own opposite is 0, so the only numbers for which this is
a correct statement are y = 0 and y = 1. We needn’t make that analysis, setting y = 2 : 2(2 − 1) = 1 and
2(1 − 2) = −1, so we get different results. We included this problem, because an error (misuse of the distributive
property) leads to a different conclusion.

e) Using the distributive property, and then collecting terms we get

2x − 3 − 2(x − 3) = 2x − 3 − 2x + 6 = 3.

So the first expression is equivalent to 3. Since 3 is not 0, the expressions are inequivalent: in fact, no matter what
substitution for x is made, the first always produces 3 and the second is always 0.

For linear expressions (like those in Example 6), there is a simple test for equivalence, based on grade 8 mathe-
matics. However, it is so useful that it makes sense to let sixth graders know it. Basically it is this: if two linear
expressions give the same results for two different substitutions, then they are equivalent. Here is the test:

Two expressions of the form ax + b and cx + d
a) are equivalent if a = c and b = d. Otherwise they are inequivalent.
b) If a = c and b , d then there is no substitution for x for which the subsequent computation
comes to the same result.
c) If a , c, there is precisely one substitution which produces the same result in both expressions.
d) If a , c but b = d, the only substitution to make the expressions the same is 0.
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Example 7. Of these pairs of linear expressions, explain the equivalence (or inequivalence) of the pair.

a) 2x + 1 and x + 3, b) 2x + 1 + 3x − 1 and 5x, c) 2x − 3 and 2(x − 3), d) 3(x − 2) and 3x − 6.

Solution. a) Substitute x = 0 to get 1 and 3, so they are not equivalent. However, if we substitute 2 for x, both
expressions produce 5. Later on we will refer to this situation as “2 is the solution of the equation 2x + 1 = x + 3.”
For now it suffices to note that finding one numeric substitution resulting in computations of the same number
does not suffice to show equivalence.

b) Collect like terms in the first expression: we get the equivalent expression 5x, which is the second expression,
so they are equivalent.

c) Apply the distributive property to the second expression to get 2x − 6, which is always 3 less than 2x − 3. The
expressions are inequivalent.

d) Here the distributive property on the first expression produces 3x − 6, which is the second: the expressions are
equivalent.

Example 8. If Manuel earns $8 per hour mowing lawns, write two different, equivalent algebraic expressions for
how much money he will earn by working for h hours.

Solution. As with numeric expressions, there are many equivalent algebraic expressions. For each hour Manuel
mows a lawn, he earns $8. Therefore, he will earn 8 + 8 + · · · + 8 (where there are h addends of 8) dollars.
Since this expression represents h groups of 8, we may also write this as h · 8, which is equivalent to 8 · h by
the commutative property of multiplication. A common convention is to omit the multiplication symbol when
dealing with an algebraic expression that is the product of a number and a symbol and write the number (called a
coefficient) before the variable, meaning 8 · h and h · 8 would both be written 8h.

An algebraic expression may involve more than one unknown/variable. This is illustrated in the next example.

Example 9: In Example 3, Kay purchased 4 songs at $1.50 each and 3 movies at $5.00 each. Write an expression
for how much Kay will spend by downloading s songs and m movies.

Solution. There are many equivalent expressions. The songs will cost 1.5 + 1.5 + · · · + 1.5 (s addends) which
is the same as s groups of 1.5 or s · 1.5. The movies will cost 5 + 5 + · · · + 5 (m addends) which is the same as m
groups of 5, or m ·5. Using our convention of writing the number first in a product, the total cost will be 1.5s+5m.
This expression is helpful because it will let us know the cost to download any choices for number of songs or
number of movies.

There are two more Properties of Arithmetic that can be brought up in grade 6, as they describe the special
properties of the specific numbers 0 and 1. The reason to introduce them here is to initiate student understanding
of the special roles played by these numbers. Their algebraic roles are central (pun intended) to the understanding
of additive and multiplicative inverses.

Identity Properties of 0 and 1

Additive Identity Property of 0. When you add zero to a number/expression, the number/expression
does not change.

A + 0 = A.

Multiplicative Identity Property of 1. When you multiply a number/expression by one the num-
ber/expression does not change.

A × 1 = A.
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Students will understand that if you add nothing to A, the result is still A; and if you take one copy of A, then
all you get is A. But the point here is to move to the (formal) algebraic understanding of what is going on. For
example, in grade 7 the idea of changing units is discussed. For example, 3 feet equals 1 yard. So, to change 87
feet to yards, we write

87 feet = 87 feet ×
1 yard
3 feet

=
87
3

yards = 29 yards.

What we have done here is to change from feet to yards by multiplying by 1, in the form

1 =
1 yard
3 feet

.

Section 2. Writing, Simplifying and Evaluating Algebraic Expressions

Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view
one or more parts of an expression as a single entity. For example, describe the expression 2 (8 + 7) as a product
of two factors; view (8 + 7) as both a single entity and a sum of two terms. 6.EE.2b.

Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in
real-world problems. Perform arithmetic operations . . . in the conventional order when there are no parentheses
to specify a particular order (Order of Operations). 6.EE.2c.

Terms and Factors

In the previous section, students began working with expressions. There are several mathematical words as-
sociated with expressions. First of all, an expression consists of numbers and letters connected by arithmetic
operations. The numbers are called constants and the letters are called unknowns or variables. The operations are
addition, subtraction, multiplication and division. It is customary to reduce this to the operations of addition and
multiplication, since subtraction is the same as “adding the opposite,” and division is the same as “multiplying by
the inverse. Expressions may also include parentheses to indicate the intended order of operations. For example,
3 + 2 · 6 may be ambiguous and can be interpreted as either (3 + 2) · 6 or 3 + (2 · 6). The parentheses tell us which
operations to perform first: in the case of (3 + 2) · 6, first add 3 and 2; and in the case of 3 + (2 · 6), first multiply 2
and 6. So, an expression of the form x − 3 is to be read as “x + (−3) (add the opposite of 3 to x)” and 5÷ 3 as 5 · 1

3
(multiply 5 by the inverse of 3).

A term is a piece of an expression that is being added (also called an addend). This can be either a single symbol,
a product of symbols or another expression in parentheses. So, in the expression 7 + 3x, the terms are 7 and 3x. in
the expression 8 − 2, the terms are 8 and −2. In the expression 3(y + 2) + 6, 3(y + 2) is a (compound) term, as is
6. In the expression 1.5s + 5m from Example 9 in section 1, 1.5s and 5m are each terms, in fact, compound terms.
In the expression 7 − (3 − 1), the terms are 7 and −(3 − 1).

A factor of an expression is a piece of the expression that is multiplied into the expression. Thus 1.5 and s are
factors of the term 1.5s, 3 and x + 1 are factors of 3(x + 1), and x and y are factors of xy.

It is important to be careful using this language, for it is too easy to confuse terms and factors. For example, the
expression 2x + xy consists of two terms, each is a compound term, and the first has the factors 2 and x and the
second has the factors x and y. Later in this section we will discuss the distributive property and use the fact that
x is a factor of both terms, to show that the expression has an equivalent representation that makes explicit that x
is a factor of the expression (the equivalent representation being x(2 + y)). As this discussion can be difficult to
follow, at this point it is essential to become fluent about terms and factors.

Example 10. For the following expressions, identify the terms and the factors of the terms.

a) x + (2 + y) b) 3xy2 c) 7x − 2 + (3x + 2).

Solution. a) The terms are x and 2 + y.
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b) There is just one term, 3xy2. Its factors are 3, x, y, y.

c) There are three terms: 7x,−2, 3x + 2. The factors of the first term are 7 and x; of the second, −1, 2. The third
term itself consists of two terms, 3x and 2. The factors of 3x are 3 and x. Why are the terms 7x,−2, 3x + 2, and
not

Terms that involve the same variable raised to the same exponent are called like terms. In the expression 3x + 5y +

7 + 4y + 8, the terms are 3x, 5y, 7, 4y, and 8. Here, 5y and 4y are like terms because they involve the same variable,
y. 7 and 8 are both constants and are also like terms. However, 3x has no like terms in this expression.

The importance of distinguishing like terms is that they can be combined to make the expression easier to read
and compute, a process called simplifying. Students have been doing this for years, combing units with units, tens
with tens, hundreds with hundreds, etc. The process of simplification may be illustrated through an analogy. If
you have 5 apples and you add 4 apples, you have 9 apples. If you have 7 oranges and you add 8 oranges, you end
up with 15 oranges. However, 3 bananas added to 9 apples do not make 12 bananas nor 12 apples because they are
different kinds of fruits (unlike terms). In a similar way, we combine like terms (the same kinds of fruit) making
5y+4y worth 9y and 7 + 8 can be replaced by 15; but 3x has no other like terms in this expression so it must remain
as is. Therefore, using properties of arithmetic (commutative and associative), the expression 3x + 5y + 7 + 4y + 8
is equivalent to 3x + 9y + 15. Since this involves the fewest possible terms (all terms are unlike), we say that it is
in simplified (or simplest) form.

Example 11. Collect like terms in these expressions.

a) x + 3 + 4 + y + 2 b) 3(x + 1) + 5x + 1 c) 3x + 1 + 5(x + 1) d) 2x − 3y + 2(x + y + 2).

Solution. a) x + y + 9 b) 8x + 4 c) 8x + 6 d) 4x − y + 4.

Algebra tiles are an aid in understanding simplification. They are readily available from online images to print
paper versions. There are also many online applets students can use to model with algebra tiles. The basic tiles
(1, x, y, . . . ) are all the same width, 1, but differ in length based on the variable: units are squares, x-tiles have one
length, and y-tiles have a different length. We can also create tiles for x2 by making a square where each side has
length x. Similarly, y2 is a square where each side has length y. Because of this geometric nature, x2 is commonly
read as “x-squared.” Some sample tiles are shown below.

 

 

 

  

 

 

 

 

??How much do I need to explain how to use algebra tiles?? 

The expression x + y + 1 + 1 + y + x + 1 + x can be modeled and then simplified using algebra 

tiles.   

Step 1:  Model the expression with the tiles. 

 

 

 

 

Step 2:  Rearrange tiles so that tiles of the exact same shape (like terms) are together.  This is 

essentially the step of combining like terms. 

 

 

 

 

 

 

 

 

Step 3:  Interpret the result.   

In the first column of step 2, we have three x-tiles, or 3x.  Next we see two y-tiles, or 2y.  Finally, 

we have three unit tiles or 3.  Therefore the expression x + y + 1 + 1 + y + x + 1 + x in equivalent, 

simplified form is 3x + 2y + 3.   

 

??Do we need to do another example, such as 3(2x) + 3y + 4 + y??  

 

??  Do I need to model simplifying expressions on the number line as well?? 

 

In addition to the commutative and associative properties of arithmetic, another very important 

property is the distributive property over addition: a(b + c) = ab + ac.  This may best be 

understood through concrete numeric examples and then generalized using algebra tiles.   

 

Let’s first examine the problem 3(2 + 4).  Since 2 + 4 = 6, this multiplication problem can be 

simplified to 36 and can be represented by an array of 3 rows of 6 columns, as shown below. 

 

 

1 x y 

x2 
y2 

1 x y 1 x y 1 x 

1 

x 

y 

1 

x 

y 

1 x 

Example 12. Model and simplify the expression x + y + 1 + 1 + y + x + 1 + x using algebra tiles.

Solution. Step 1: Model the expression with the tiles.
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Step 3:  Interpret the result.   
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we have three unit tiles or 3.  Therefore the expression x + y + 1 + 1 + y + x + 1 + x in equivalent, 

simplified form is 3x + 2y + 3.   

 

??Do we need to do another example, such as 3(2x) + 3y + 4 + y??  

 

??  Do I need to model simplifying expressions on the number line as well?? 

 

In addition to the commutative and associative properties of arithmetic, another very important 

property is the distributive property over addition: a(b + c) = ab + ac.  This may best be 

understood through concrete numeric examples and then generalized using algebra tiles.   

 

Let’s first examine the problem 3(2 + 4).  Since 2 + 4 = 6, this multiplication problem can be 

simplified to 36 and can be represented by an array of 3 rows of 6 columns, as shown below. 

 

 

1 x y 

x2 
y2 

1 x y 1 x y 1 x 

1 

x 

y 

1 

x 

y 

1 x 

Step 2: Rearrange tiles so that tiles of the exact same shape (like terms) are together. This is essentially the step
of “combining like terms.”

6MF6-11 ©2017 University of Utah Middle School Math Project in partnership with the
Utah State Office of Education. Licensed under Creative Commons, cc-by.



 

 

 

  

 

 

 

 

??How much do I need to explain how to use algebra tiles?? 

The expression x + y + 1 + 1 + y + x + 1 + x can be modeled and then simplified using algebra 

tiles.   

Step 1:  Model the expression with the tiles. 

 

 

 

 

Step 2:  Rearrange tiles so that tiles of the exact same shape (like terms) are together.  This is 

essentially the step of combining like terms. 

 

 

 

 

 

 

 

 

Step 3:  Interpret the result.   
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we have three unit tiles or 3.  Therefore the expression x + y + 1 + 1 + y + x + 1 + x in equivalent, 

simplified form is 3x + 2y + 3.   

 

??Do we need to do another example, such as 3(2x) + 3y + 4 + y??  
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In addition to the commutative and associative properties of arithmetic, another very important 
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y2 

1 x y 1 x y 1 x 
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y 

1 

x 

y 

1 x 

Step 3: Convert to an algebraic expression. In the first column of step 2, we have three x-tiles, or 3x. Next we see
two y-tiles, or 2y. Finally, we have three unit tiles, or 3. Therefore the expression x + y + 1 + 1 + y + x + 1 + x in
equivalent, simplified form is 3x + 2y + 3.

Simplification of expressions is not easy, primarily because the objective of simplify is often dependent upon the
context. For example, we might simplify 5(3+4x) to 15+20x if we wanted the simplest computational procedure.
But if the question is to find out the value of x that gives this expression the value of 100, then the factored form is
simpler, as it tells us the first step in solution: divide by 5. (The remaining steps of the solution will be discussed
later in the chapter.) The idea of the following problem is to emphasize that the word “simplify” may need to be
interpreted in terms of the context.

Example 13. In the table, on the next page, the instruction is “simplify the expression in the second row.” The
third row line gives an answer to the instruction. For each expression explain why the answer given is correct or
incorrect. If incorrect, give the correct answer.

Problem a b c d e
Expression x−x−x+y−y−y x+x+x+y+y+y 4 + (2 + x) 12x 12x + 18y
Simplification x + y − 2x − 2y 3xy Simplified 3 · 4 · x 6(2x + 3y)

Solution.

a). This is not in simplest form, for the terms x and −2x (and y and −2y) can still be combined. The
student who gives this answer vaguely understand “add together like terms” but is probably having difficulty
understanding that the term −2x means “add the opposite of 2x.”

b). This answer is incorrect because of a confusion of addition with multiplication. The student has seen 3
x’s and 3 y’s, so sees 3 xy’s. But nowhere in the given expression are x and y connected by a multiplication sign.
The correct simplification is 3x + 3y; or 3(x + y), using the distributive property.

c). Here the student has decided that the expression has two unlike terms, 4 and 2+x, and so is in simplified
form. But, suppose that we remove the parentheses (a legitimate move) to get 4 + 2 + x. Then we have three terms,
the first of which are like terms, and so we can combine them to get 6. The student has a point, and that is that the
parentheses are there to set the 2 + x apart from the 4. However, given no such reason, we should always rearrange
parentheses (legitimally) to our advantage, and the preferred result is 6 + x.

d). This is definitely a toss up. For purposes of computation, 12x is as simple as it can get. But, suppose (as
did this student) that one was interested in exhibiting the factorization of the product. Then, the answer is almost
the one sought for, which would be 3 · 2 · 2 · x.

e). The expression as it stands is simplified (for computational purposes), but if our interest is in the
relationship between x and y, then the second line shows that better. This interest will be central in grade 7
mathematics, so here we should accept both forms as correct.

In the following table we show the best response to ”simplify” with the caveat that in c)-e) we can go with both
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answers, depending upon the purposes of the simplification.

Problem a b c d e
Expression x−x−x+y−y−y x+ x+ x+y+y+y 4 + (2 + x) 12x 12x + 18y
Simplification −x − y 3x+3y or 3(x+y) 6 + x Simplified 6(2x + 3y)

As a lead in to the next subsection, notice that the the answer to b) could be: there are 3 x’s added to 3 y’s, or, after
rearranging, there are 3 (x + y)’s.

The Distributive Property and Factoring

In addition to the commutative and associative properties of arithmetic, another very important property is the
distributive property of multiplication over addition:

A(B + C) = AB + AC.

We have seen this property, without naming it, at work in part d) of Example 11: collect like terms in the expression
2x − 3y + 2(x + y + 2). As presented, there are three terms, 2x, 3y and 2(x + y + 2), where the second term is
subtracted, and the last term is added, so there is nothing to do. However, using the distributive property on
the last term (2(x + y − 2) = 2x + 2y − 4), and then making that replacement we get the equivalent expression
2x− 3y + 2x + 2y + 4. Now we can combine like terms to get 4x− y + 4, as given in the solution. In this expression
the terms are 4x, y, 4 where the second term is subtracted and the last is added.

This discussion demonstrates that the question: “what are the terms of an expression?” is ambiguous, for appli-
cation of the distributive property gives us another. For our purposes, we should always apply the distributive
property to produce the simplest “like” terms. Nevertheless, we see again that the request “simplify” can be
ambiguous without reference to context.

Example 14. Two boys and four girls have been running chores all afternoon for the neighborhood grocer. At the
end of the day, she paid them $3 each for their work. How much, in total, did the grocer pay out?

Solution. The point of the distributive property is that there are several ways to make this computation. First,
the grocer paid the boys $3 each, so that comes to 3 + 3, or $6. As for the girls she put out 3 + 3 + 3 + 3 or $12. In
total the grocer paid out $18.

We could also reason this way: there are 2+4 workers, each of whom has been paid $3, so the grocer has paid out
3(2 + 4), or 3 · 6 = 18 dollars.

 

 

 

 

 

 

 

Some students benefit from making an “outline” or “frame” of the product 36 by first creating a 

column of 3 units and a row of 6 units, and then completing the product (rectangle) as shown 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

Using this method, we see that 3(2 + 4) has a value of 18. 

 

If we look at the problem a little differently, we can separate the 3 by 6 rectangle into two pieces: 

two columns to represent the 2 and four columns to represent the 4 in the product.  This is 

illustrated below.   

 

 

 

 

 

 

 

The first block has three rows of two columns, representing the product 32.  The second block 

has three rows of four columns, representing the product 34.  Since we did not add or take away 

blocks (we only split the image into two pieces), the value must still be the same as 3(2 + 4) = 

36 = 18.  Therefore 3(2 + 4) = 32 + 34, a numeric example of the distributive property a(b + c) 

= ab + ac, where a =3, b = 2, and c = 4.  This is summarized in the figure below. 
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Let’s illustrate the computation using algebra tiles.
Since 2 + 4 = 6, this multiplication problem can be
simplified to 3 · 6 and can be represented by an array
of 3 rows of 6 columns, as shown to the right.

Some students benefit from making an “outline” or
“frame” of the product 3 · 6 by first creating a column
of 3 units and a row of 6 units, and then completing
the product (rectangle) as shown below.
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Using this method, we see that 3(2 + 4) has a value of 18.

 

 

 

 

 

 

 

Some students benefit from making an “outline” or “frame” of the product 36 by first creating a 

column of 3 units and a row of 6 units, and then completing the product (rectangle) as shown 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

Using this method, we see that 3(2 + 4) has a value of 18. 

 

If we look at the problem a little differently, we can separate the 3 by 6 rectangle into two pieces: 

two columns to represent the 2 and four columns to represent the 4 in the product.  This is 

illustrated below.   

 

 

 

 

 

 

 

The first block has three rows of two columns, representing the product 32.  The second block 

has three rows of four columns, representing the product 34.  Since we did not add or take away 

blocks (we only split the image into two pieces), the value must still be the same as 3(2 + 4) = 

36 = 18.  Therefore 3(2 + 4) = 32 + 34, a numeric example of the distributive property a(b + c) 

= ab + ac, where a =3, b = 2, and c = 4.  This is summarized in the figure below. 

  

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 1 1 1 1 1 

6 

1 

1 

1 

3 

1 

1 

1 

1 1 1 1 1 1 

6 

3 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

If we look at the problem a little differently, we can
separate the 3 by 6 rectangle into two pieces: two
columns to represent the 2 and four columns to rep-
resent the 4 in the product. This is illustrated to the
right.

The first block has three rows of two columns, repre-
senting the product 3 · 2. The second block has three
rows of four columns, representing the product 3 · 4.
Since we did not add or take away blocks (we only split the image into two pieces), the value must still be the
same: 3 · (2 + 4) = 3 · 6 = 18. Therefore, 3(2 + 4) = 3 · 2 + 3 · 4 is a numeric example of the distributive property
a(b + c) = a · b + a · c, where a = 3, b = 2, and c = 4. This is summarized in the figure below.

 

 

 

 

 

 

 

 

 

 

 

Another example may help to illustrate.  45 can be modeled by a rectangle of four rows and 5 

columns (of one unit each).   

 

 

 

 

 

 

 

 

 

 

 

If we create a rectangle to model 46, it will be too big for 45.  How much too big?  Since  

5 = 6 – 1, we can create a (lightly shaded) rectangle to model 41 and subtract this from the 46 

rectangle.  This gives 4(6 – 1) = 46 – 41. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure above illustrates the distributive property over subtraction: a(b – c) = ab – ac.  In our 

numeric case, a = 4, b = 6, and c = 1. 
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46            41   4(6 – 1) = 46 – 41 

Example 15. Larry, Moe and Curly work Saturdays at the hamburg joint on Toledo Avenue. They each get paid
$12/hour for 6 hours, and then they all have dinner there at the joint, at $7 per person. When they get home, they
all deposit their “take-home” earnings in the same piggy bank. How much money is deposited in the piggy bank
each Saturday?

Solution. Each of Larry, Moe and Curly worked 6 hours at a pay of $12/hour, so each paycheck was 6 · 12
dollars. Then each spent $7 for dinner. So the “take-home” for each is 6 · 12− 7 dollars. Since this is the same for
all of them, the aggregate “take-home” (that is, the deposit in the piggy bank is 3 · (6 · 12 − 7) = 195 dollars.

We could instead first calculate the aggregate pay for work, which is 3 · (6 ·12), and then subtract the cost of dinner,
which is 3 · 7 dollars.

Both computations are correct, telling us that

3 · ((6 · 12) − 7) = 3 · (6 · 12) − 3 · 7 .

In this form it is easiest to compute the left hand side of this equation, to get 3 · (72 − 7) = 3 · 65 = 195 dollars.
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The following standard has been discussed in Chapter 0 (Fluency); this is a good place to bring that discussion in
and further develop students’ abilities in mental arithmetic.

Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of
two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers
1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example,
express 36 + 8 as 4(9 + 2). 6.NS.4.

The distributive property is useful in doing mental arithmetic. Consider the numeric expression 18+30. We
observe that each term is divisible by 3, giving us 3× (6 + 10). This is 3×16 = 48. If we had thought a little more,
we could have made the computation even easier: both terms are divisible by 6, giving us 6× (3 + 5) = 6× 8 = 48.

In the above case, we have looked for the largest number that divides both terms; this is called the greatest common
factor, or GCF. Then we have reduced the problem to an addition and multiplication in its simplest form.

Example 16. Use the distributive property to mentally calculate the following sums.

a) 35 + 25 b) 60 + 30 + 90 c) 77 + 33 d) 84 − 28.

Solution.

a) 35 + 25 = 5(7 + 5) = 5 · 12 = 60 b) 60 + 30 + 90 = 30(2 + 1 + 3) = 30 · 6 = 180

c) 77 + 33 = 11(7 + 3) = 110 d) 84 − 28 = 4 · (21 − 7) = 4 · 7 · (3 − 1) = 4 · 7 · 2 = 56.

In general, when we have a numeric expression whose terms have no common factors (other than 1), the expression
is in completely factored form.

These methods (of factoring and simplification) apply directly to algebraic expressions, since the letters in the
algebraic expression are placeholders for numbers. The following example illustrates this.

Example 17. Write the expression 15 − 20x + 35y in completely factored form.

Solution. Note that each coefficient is a multiple of 5: 15 = 5 · 3, 20 = 5 · 4, and 35 = 5 · 7. Therefore,
15 − 20x + 35y is equivalent to 5(3 − 4x + 7y). Since there are no other common factors shared between the terms
in the parentheses, the expression is in completely factored form.

Repeated Multiplication: Exponents

Write and evaluate numerical expressions involving whole-number exponents. 6.EE.1

When students learned multiplication, they saw that it was a quicker way to do repeated addition. For example, 2
+ 2 + 2 + 2 + 2 is five groups of two, or 5 · 2. Using variables, a + a + a + · · ·+ a (where there are b addends of a)
is b groups of a, or b · a.

Now, we consider the process of repeated multiplication, such as 2 · 2 · 2 · 2 · 2, which is the product of five twos.
We use exponents to describe this repeated multiplication: 25 represents this product of five 2s, and if we do the
calculation, we get 32.

2 · 2 · 2 · 2 · 2 = 25 = 32 .
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For any number a and any positive integer b we express the product

a · a · a · · · · · a where there are b factors of a, as ab .

The superscripted number (or variable) is the exponent and tells us how many times to multiply the base (the non-
superscripted number or variable) by itself. In this example, the exponent of 5 and base of 2 tell us to multiply 2
by itself 5 times.

Exponents come up in many context, and eventually lead to a method of transforming multiplication into addition
(logarithms; a topic in grade 10 mathematics). Here we will discuss in more detail two such contexts: factoring
and geometric measurement.

Example 18. Factor these numbers as a product of the smallest numbers you can find as factors.

a) 4 b) 12 c) 20 d) 32 e) 40 f) 48 g)120 h) 1000.

Solution.

a) 4 = 2 · 2 = 22.

b) 12 = 4 · 3 = 2 · 2 · 3 = 22 · 3.

c) 20 = 4 · 5 = 2 · 2 · 5 = 22 · 5.

d) 32 = 2 · 16 = 2 · 4 · 4 = 2 · (2 · 2)(·2 · 2) = 25.

e) 40 = 5 · 8 = 5 · (2 · 2 · 2) = 23 · 5.

f) 48 = 4 · 12. Now, using a) and b): 48 = 22 · 22 · 3 = 24 · 3.

g) 120 = 10 · 12 = (5 · 2) · (22 · 3) = 23 · 3 · 5.

h) 1000 = 10 · 10 · 10 = 103. But now, 10 = 2 · 5. So 1000 represents (2 multiplied together 3 times) times (5
multiplied together 3 times), which is represented by 23 · 53.

The phrase “the smallest numbers you can find as factors” may require some discussion, and students may rec-
ognize that those smallest numbers have the property that they can no longer be written as products of whole
numbers greater than one, and thus are primes. Although such a discussion is desirable, it is not the point of this
exercise, which is to gather together the same prime factors using exponents. Another point is that each of these
problems has many routes to a final answer, and the final answer is always the same. For example, the solution to
b) could be 12 = 6 · 2 = (3 · 2) · 2 = 22 · 3. The recognition that there are many routes to the answer, and they
all lead to the same place is a significant piece of mathematical understanding of the rules of arithmetic, and the
fundamental fact that no matter how you got there, there is only one final answer.

Using algebra tiles, we can see how expressions can involve variables raised to exponents. With the same technique
as before, we interpret x2 as x · x, which can be viewed as a square of side length x, and y2 as a square of side
length y. This can be seen in the frames below. Note that since x and y are different variables (as represented by
different sized algebra tiles), the squares for x2 and y2 are of different sizes.
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A rectangle that has equal side lengths is called a square.  Because of this, 32 is often read as 

“three squared.”  It is also permissible to read 32 as “three raised to the power of two.”  Using the 

same reasoning, we can talk about 102 being a square of side length 10, which is worth 100.  The 

concept extends to rational numbers as well: 1.52 is a square where each side is 1.5 units long.   

 

 

 

 

 

 

In the upper-left piece of the image, we see one whole unit shaded.  The bottom-left and top-

right portions are one-half of a unit each, and the bottom right piece is one-half of one-half of a 

unit, or one-fourth.  Total there are two and one-fourth units, which is the numeric value of 1.52.  

 

Another common exponent is the third power, such as 23.  Using a three-dimensional visual of 

multiplication, we see that 23 = 222 represents a cube where each side is of length 2.   

 

 

 

 

 

 

 

 

Note that there are two layers cubes of width 2 and length 2.  Because of this geometric 

representation, 23 is read as “two cubed” or “two raised to the power of three” and 23 = 8.    

 

For exponents larger than 3, there is not an easy, geometric visual representation.  Therefore 34 

and 69 are read as “three to the power of four” and “six to the power of nine”, respectively.  

 

Using algebra tiles, we can see how expressions can involve variables raised to exponents.   

With the same technique as before, we interpret x2 as xx, which can be viewed as a square of 

side length x, and y2 as a square of side length y.  This can be seen in the frame below.  Note that 

since x and y are different variables, the squares for x2 and y2 are of different sizes.        
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The geometric interpretation carries over to variables raised to the third power: x3 corresponds to a cube where
each side is of length x and the volume of the cube is x · x · x. Similar reasoning yields a cube of side length y has
a volume of y3 cubic units. These are shown in the figure below.

The geometric interpretation carries over to variables raised to the third power.  x3 corresponds to 

a cube where each side is of length x and the volume of the cube is xxx.  Similar reasoning 

yields a cube of side length y to represent y3.  These are shown in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

When learning about algebraic expressions involving exponents, sometimes confusion arises.  

For example, there is an important difference between 3x2 and (3x)2.  The first expression, 3x2, 

means three groups of x2.  Note that 3x2 can be written 3 x2 to help emphasize that it is 3 times 

(copies of) x2.  Using the associative property, 3x2 can also be written as (3x)x. or equivalently, (x 

+ x + x)x.  The second expression, (3x)2, means a square where each side length is 3x, and gives a 

value of 9x2.  Both of these expressions are demonstrated in the figure below to show the 

difference between them. 
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When learning about algebraic expressions involving exponents, sometimes confusion arises. For example, there
is an important difference between 3x2 and (3x)2. The first expression, 3x2 , means three groups of x2. Note that
3x2 can be written 3 · x2 to help emphasize that it is 3 times (copies of) x2. Using the associative property, 3x2 can
also be written as (3x)x or equivalently, (x + x + x)x. The second expression, (3x)2, means a square where each
side length is 3x, and gives a value of (3 · x) · (3 · x) = 3 · 3 · x · x = 9x2. Both of these expressions are demonstrated
in the figure below to show the difference between them.

The geometric interpretation carries over to variables raised to the third power.  x3 corresponds to 

a cube where each side is of length x and the volume of the cube is xxx.  Similar reasoning 

yields a cube of side length y to represent y3.  These are shown in the figure below. 
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means three groups of x2.  Note that 3x2 can be written 3 x2 to help emphasize that it is 3 times 

(copies of) x2.  Using the associative property, 3x2 can also be written as (3x)x. or equivalently, (x 

+ x + x)x.  The second expression, (3x)2, means a square where each side length is 3x, and gives a 
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x 

x 

x 

x3 
y 

y 

y 

y3 

x 

x2 x 

x 

x 

x x 

x2 x2 

x2 x2 x2 

x2 x2 x2 

3x2 (3x)2 has a value of 9x2 

x 

x2 x 

x x2 

x2 x 

Evaluate expressions . . . that arise from formulas used in real world problems. Perform arithmetic operations,
including those involving whole number exponents, in the conventional order when there are no parentheses to
specify a particular order (Order of Operations). For example, use the formulas V = s3 and A = 6s2 to find the
volume and surface area of a cube with sides of length s = 1

2 . 6.EE.2c
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In the preceding chapter, in area and volume calculations, students became aware of the geometrically specific
exponents 2 and 3: a2 is the area of a square of side length a; a3 is the volume of a cube of side length a. For
these reasons, the expression a2 is read as “a squared,” and a3 is read as “a cubed.” In this language a square of
side length 4 units is 42 = 16 square units, and a cube of side length 7 units has volume 73 = 343 cubic units.

Example 19.
a) What is the volume of a cube of edge length 6 cm?
b) What is the volume of a rectangular prism, the length of whose edges are 4 cm, 6 cm and 9 cm?
c) What is the volume of a rectangular prism of if one face is a square of area 27 square centimeters, and the length
of the remaining side is 8 cm?

Solution. a) We use the formula V = s3 for the volume of a cube of side length s, by substituting 6 for
s : V = 63 = 216 cu. cm.

b) We use the formula V = LWH for the volume of a prism of side lengths L,W,H, by substituting 4 for L , 6 for
W and 9 for H : V = 4 · 6 · 9 = 216 cu. cm.

c) We use the formula V = AH for the volume of a prism with a face a rectangle of area A and the remaining side
length H, by substituting 36 for A and 6 for h : V = 27 · 8 = 216 cu. cm.

Notice that all these prism have volume 216 cu. cm, even though they have different shapes. It is good to emphasize
this: if a rectangular prism has an area whose measure happens to be the cube of a number (in this case 63), it is
not necessarily a cube.

Notice also that even though area can be computed as LWH or AH, we cannot conclude that these algebraic
expressions are equivalent: they are equivalent only in the given context of the volume of a prism, and in particular
need the additional statement that A = LW.

Of course, the formulas work for fractional numbers as well, as the following examples show.

Example 20. What is the area of a napkin that has a side length of 1.5 ft?

Solution.

A rectangle that has equal side lengths is called a square.  Because of this, 32 is often read as 

“three squared.”  It is also permissible to read 32 as “three raised to the power of two.”  Using the 

same reasoning, we can talk about 102 being a square of side length 10, which is worth 100.  The 

concept extends to rational numbers as well: 1.52 is a square where each side is 1.5 units long.   

 

 

 

 

 

 

In the upper-left piece of the image, we see one whole unit shaded.  The bottom-left and top-

right portions are one-half of a unit each, and the bottom right piece is one-half of one-half of a 

unit, or one-fourth.  Total there are two and one-fourth units, which is the numeric value of 1.52.  

 

Another common exponent is the third power, such as 23.  Using a three-dimensional visual of 

multiplication, we see that 23 = 222 represents a cube where each side is of length 2.   

 

 

 

 

 

 

 

 

Note that there are two layers cubes of width 2 and length 2.  Because of this geometric 

representation, 23 is read as “two cubed” or “two raised to the power of three” and 23 = 8.    

 

For exponents larger than 3, there is not an easy, geometric visual representation.  Therefore 34 

and 69 are read as “three to the power of four” and “six to the power of nine”, respectively.  

 

Using algebra tiles, we can see how expressions can involve variables raised to exponents.   

With the same technique as before, we interpret x2 as xx, which can be viewed as a square of 

side length x, and y2 as a square of side length y.  This can be seen in the frame below.  Note that 

since x and y are different variables, the squares for x2 and y2 are of different sizes.        
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In the upper-left piece of the image to the right, we see
a 2× 2 square with a smaller square of side length one
and a half units shaded. We can calculate the area of
the shaded piece in two ways:

1) The shaded area consists of 1 unit square and 2
halves of a square unit (the shaded portions of the up-
per right unit square) and the lower left unit square,
and one-fourth of the lower right unit square, telling
us that the area of the napkin is 1 + 2( 1

2 ) + 1
4 =

2.25 square feet.

2) We can subtract the unshaded portions from the full
2×2 square, telling us that the area of the napkin is the
area of the large square less the area of the unshaded
pieces:

= 4 − 2 ·
1
2
−

3
4

= 4 − 1 − 0.75 = 2.25 sq. ft.
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A rectangle that has equal side lengths is called a square.  Because of this, 32 is often read as 

“three squared.”  It is also permissible to read 32 as “three raised to the power of two.”  Using the 

same reasoning, we can talk about 102 being a square of side length 10, which is worth 100.  The 

concept extends to rational numbers as well: 1.52 is a square where each side is 1.5 units long.   
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right portions are one-half of a unit each, and the bottom right piece is one-half of one-half of a 

unit, or one-fourth.  Total there are two and one-fourth units, which is the numeric value of 1.52.  
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multiplication, we see that 23 = 222 represents a cube where each side is of length 2.   
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When we move to 3 dimensions and the concept of
volume, students have learned that the volume of a
cube is the three times repeated product of the side
length. That is: the volume of a cube of side length
a is a3 (as is shown in the image to the right, where
a = 2).

Note that there are two layers of squares of side length
2, explaining for us why

23 = 2 · 22.

Example 21. a) What is the volume of a cube of side length 3
5 feet? What is the surface area of the same cube?

Solution. We know (recall section 4 of Chapter 5) that a cube of side length L feet has volume L3 cubic feet
and surface area 6L2 square feet. So, just substitute 3

5 for L:

a) Volume = (
3
5

)3 =
3 · 3 · 3
5 · 5 · 5

=
27
125

cu. ft.

Note that if we had converted to decimals ( 3
5 = 0.6), the computation would be Volume = (0.6) · (0.6) · (0.6) =

0.216 cu. ft.

b) Surface Area = 6 · (
3
5

)2 = 6 ·
9

25
=

54
25

= 2
4
25

sq. ft.

In decimals, this computes to 2.16 sq. ft.

In the above problem, it was just a coincidence that the surface area is 10 times the volume. This is specific to
these numbers, because 3

5 = 6
10 = 0.6. It might be useful to demonstrate this in detail, especially if the issue comes

up.

Example 22.

x x2 x3

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

Another concept that students easily deduce from
problems with whole numbers is: “the square of a
number is bigger than the number, and the cube is
much bigger.” Then, when they work with figures of
side length less than 1, they are surprised at how small
the volume is compared to the side length. The intent
of the next example is to make clear the difference of
exponentiation of numbers less than one from those
greater than one.

a) Fill in the blanks in the table to the right.

b) Graph the values.
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Solution. The table of values of x run from 0 to 2, at a spacing of 0.2. We are asked to calculate the values of
the squares and cubes of these numbers. The result is in the table below.

x x2 x3

0 0 0
0.2 0.04 0.008
0.4 0.16 0.064
0.6 0.36 0.216
0.8 0.64 0.512
1 1 1
1.2 1.44 1.728
1.4 1.96 2.744
1.6 2.56 4.096
1.8 3.24 5.832
2 4 8 0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

0	 0.2	 0.4	 0.6	 0.8	 1	 1.2	 1.4	 1.6	 1.8	 2	

x	

x^2	

x^3	

Section 3. Equations and Inequalities in One Variable

The kind of problems that led to the development of algebra are those to determine the set of values of certain
quantities that satisfy certain conditions. For example:

• What are the dimensions of a rectangle of area 1800 sq. ft. whose length is twice its width?

• This 50 foot by 160 foot lot is to include a house whose rectangular footprint is 2800 sq. ft. and has a
frontage of at most 100 ft. What are the allowable dimensions?

The problems above are high school algebra problems, so we shouldn’t expect 6th graders to solve them, but they
should be adequately prepared so that when the time comes, they will be able to perform the tasks.

Reason about and solve one-variable equations and inequalities. 6.EE.5-9

This objective is the beginning of algebra, and will remain the over-arching goal driving the mathematics of the
next four grades. For grade 6, students learn what is meant by these terms, and how to solve one step linear
equations. These are the equations that ask:

i) for what values of x does the expression x + p produce the specific result q?

ii) for what values of x does the expression px produce the specific result q?

We might say that the first is an “additive” question, while the second is “multiplicative.” Students have been
solving this kind of problem for some time now. To solve the first, subtract p from both sides, and to solve the
second, divide both sides by p (it is assumed that p , 0). The point here is to have students articulate, in the
algebraic context, the processes they have been using.

A more complex situation (to be taken up in grades 7 and 8) is this: for what values of x do the expressions ax + b
and cx + d give the same result (i.e., “solve ax + b = cx + d”)? Historically, these equations were considered
different from the equations studied in grade 6. Indeed, they are: in grade 6 we ask: “for what value of the
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unknown do we get the result q”, and in grade 7 we ask” “for what values of x do the expressions ax +b and cx +d
give the same result?” In grade 8, students are introduced to the concepts of function and the graph of a function,
and this question becomes: For what values of x and y do the graphs of y = ax + b and y = cx + d intersect.

Understanding Equations

Understand solving an equation . . . as a process of answering a question: which values from a specified set, if
any, make the equation . . . true? Use substitution to determine whether a given number in a specified set makes
an equation . . . true. 6.EE.5.

An equation is a question asking of two expressions: for what values of the unknowns do the expressions give the
same result. Those values of the unknown which produce the same answer are called the solutions of the equation.

Example 23. Find the solutions of these equations:

a) 3 = x + 1 b) 3x = 15 c) 2x + 3 = x + 2 + x + 1 d) x + 1 = 3 + x e) |x| = 2.

Solution.

a) asks for the whole number just preceding 3 and that is 2.

b) asks for the number which, when multiplied by 3 produces 15, and that is 5.

c) is more complicated, but if we simplify the right hand side, we get the left hand side. Thus the two
expressions are equivalent, so every number is a solution of the equation.

d) This can be written as x + 1 = x + 3, and since 3 = 1+2, for any number x, the right hand side is greater
than the left by 2. So, there are no solutions.

e) There are two solutions, both +2 and −2 have absolute value 2.

As with expressions, it is not going to be possible to try all possible numbers in order to find out for which
numbers the two expressions produce the same result. What we do is to manipulate the equations, using properties
of arithmetic, so as to eventually end up with an equation for which the solution set is obvious, as:

a) x = 5 b) x = x c) x = x + 1.

In the first case the solution set is 5, in the second, all numbers are solutions, and in the last, no numbers solve the
equation.

We say that two equations are equivalent if they have the same solution set. Since we can’t check the two equa-
tions for all numbers, we resort to rules of arithmetic: these are rules that change an equation into an equivalent
equation. They include all the rules of equivalence of expressions (applied to either side of the equation) and three
more specific to equivalence of equations.

A. If we replace any expression in the equation by an equivalent expression, we obtain an equiva-
lent equation.
B. If we add or subtract the same expression to both sides of the equation, we obtain an equivalent
equation.
C. If we multiply or divide both sides of the equation by the same nonzero number, we obtain an
equivalent equation.
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Of course, two equations are not equivalent if there is a number that is a solution of one, but not of the other.

Solving Equations

Solve real-world and mathematical problems by writing and solving equations of the form x + p = q andpx = q
for cases in which p, q and x are all nonnegative rational numbers. 6.EE.7.

Because of its importance, we repeat what was said in the preceding subsection: to solve an equation, apply the
properties of arithmetic and the rules of equivalence A, B, C above until we arrive at an equation whose solution
set is obvious. The equations with which students in Grade 6 will work are of the form ax + b = q, with either
a = 1 or b = 0. In both of these cases, solving the equation requires just one step. Let’s illustrate:

Example 24. Solve these equations:

a) x + 5 = 7 b) x +
3
5

=
7

10
c) 8x = 100 d)

4
5

x = 9.

Solution.

a). Rule B allows us to subtract 5 from both sides of the equation, to get the solution: x = 2.

b). Putting everything over the common denominator 10, we get:

10x + 6
10

=
7

10
; now multiply by 10 to get 10x + 6 = 7.

Subtract 6 from both sides to get 10x = 1. Now divide by 10 to get the solution x = 1
10 .

Alternatively, we can write everything as decimals: x + 0.6 = 0.7. Now subtract 0.6 from both sides to get x = 0.1.

c). Dividing both sides by 8 (or multiplying both sides by 1
8 ) gives x = 100/8 = 25/2 = 12.5.

d). Multiplying both sides of the equation by 5/4 gives x = 45/4 = 11.25.

Understanding Inequalities

Understand solving . . . an inequality as a process of answering a question: which values from a specified set, if
any, make the inequality true? Use substitution to determine whether a given number in a specified set makes an
inequality true. 6.EE.5.

An inequality, just like an equation, asks a question about two algebraic expressions, specifically to find the
numbers which, when make the inequality true (the solution set of the inequality).

Basically, inequalities are of two kinds: “for what values of the unknown is expression A less than expression B?”
and “for what values of the unknown is expression A at most expression B?” Students may initially think the two
are the same but the subtle difference is between “less than” and “at most” (sometimes said “less than or equal
to”) has to be respected. The statement “A is less than B” is written A < B, and the statement “A is at most B” is
written A ≤ B.

Since the statement “A is less than B” is the same as “B is more than A”, and the statement “A is at most B” is the
same as “B is at least A,” we have two more possibilities of expressing an inequality. Finally, there is one more
possible statement: A is within c of B, where c is some positive number. This statement involves absolute values,
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and is written |A− B| < c. Or, is it |A− B| ≤ c? The algebraic expressions resolve that ambiguity, and in any given
context, the student will have to decide from the language, which is intended.

This table summarizes the discussion; we will follow it with specific examples.

Statement Algebraic Alternative Algebraic
A is less than B A < B B is greater than A B > A
A is at most B A ≤ B B is at least A B ≥ A
A is strictly between B
and C

B < A < C or
C < A < B

B > A > C or
C > A > B

A is between B and C B ≤ A ≤ C or
C ≤ A ≤ B

B ≥ A ≥ C or
C ≥ A ≥ B

A is strictly within c of
B

|A − B| < c A is strictly further
than c from B

|A − B| > c

A is within c of B |A − B| ≤ c A is further than c from
B

|A − B| ≥ c

Example 25. For each of the following inequalities, determine whether or not the numbers −1, 0, 6, 8 satisfy the
inequality

a) x ≤ 4 b) x < 6 c) x ≤ 3/2 d) x > 3/2 e) |x − 3| < 1

Solution.

Inequality -1 0 6 8
a) x ≤ 4 T T F F
b) x < 6 T T F F
c) x ≤ 3/2 T T F F
d) x > 3/2 F F T T
e) |x − 3| < 1 F F F F

We can also show the solution set graphically. For all of these inequalities, the solution set is an interval, it could
be an interval starting at some number, and preceding to the left or the right, or an interval between two numbers.
In the following graphics we indicate the interval by an arrow. The numerical endpoints of the arrow can either
be excluded (< or >) from the solution set, or included (≤ or ≥). We illustrate inclusion by a a filled dot, and
exclusion by an empty dot.

a) x ≤ 4 b) x < 6

c) x ≤ 3/2 d) x > 3/2

e) |x − 3| < 1
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We should note that composite inequalities are also possible. For example, part e) could also be written as 2 <
x < 4. Similarly, if the circle on the right were filled, the inequality represented is 2 < x ≤ 4.

Solving Inequalities

Write an inequality of the form x > c or x < c to represent a constraint or condition in a real-world or mathe-
matical problem. Recognize that inequalities of the form x > c or x < c have infinitely many solutions; represent
solutions of such inequalities on number line diagrams. 6.EE.8.

To solve inequalities, just as with equations, we use the same rules of equivalence, with these changes:

A. If we replace any expression in the inequality by an equivalent expression, we obtain an equiv-
alent inequality.
B. If we add or subtract the same expression to both sides of the inequality, we obtain an equivalent
inequality.
C. If we multiply or divide both sides of the equation by the same positive number, we obtain an
equivalent inequality.

Example 26. Solve and graph the solution of these inequalities:

a) 2x < 3, b) x−1 ≤ 5 c) 2x > 3, d ) x−3 < 1, e) |x−3| < 1 f) |x−3| > 1.
Jonathan: I made the change to leq in part b. Thanks for offering to make a new graphic. I have taken advantage
to your offer; below I ask for 3 more graphics.

Solution.

a) x < 3/2, b) x < 6 c) x > 3/2, d) x < 4, e) 2 < x < 4 f) x < 2 or x > 4.

a) 2x < 3 b) x − 1 < 5

c) 2x > 3 d) x − 3 < 1

e) |x − 3| < 1 f) |x − 3| > 1
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Example 27. A particular medication advises that the daily dosage is at least 20 mg and at most 80 mg. Using the
letter D to represent dosage, express this advice algebraically.

Solution. The dosage has to between the values 20 and 80. The algebraic expression for these conditions is
20 ≤ D ≤ 80, where D represents the dosage.

Note: if the instructions were “the dosage has to be greater than 20 and less than 80,” then the algebraic expression
would be 20 < D < 80. Furthermore, if the instruction were “the dosage has to be greater than 20 and at most,
80,” the algebraic expression would be 20 < D ≤ 80. The following graphic illustrates the different possibilities,
we a filled circle indicating the point is part of the solution set, and the empty circle indicating that the point is not
in the solution set.

20 ≤ D ≤ 80 20 < D < 80

20 < D ≤ 80

Example 28. Your GPS informs you that the next stop sign is 35 miles away, and your destination is within 5
miles of that stop sign. Express this statement algebraically, both with and without absolute value.

Solution. Let D represent the distance to our destination. We are told that our destination is “within 5 miles of
35 miles,” meaning that it is no less than 30 miles and no more than 40 miles. Algebraically: D > 30 and D < 40
or 30 < D < 40. In terms of absolute value, we can write this as |D − 35| < 5.

As with the preceding example, it is not clear whether the term “within” includes or excludes the extrema. Our
solution uses the exclusive definition, whereas the inclusive inequalities would be: D ≥ 30 and D ≤ 40 and
30 ≤ D ≤ 40 or |D − 35| ≤ 5.

In the case of Example 28, the ambiguity of the word “within” is not significant: the only meaning we can attach to
the GPS report is that the next stop sign is about 35 miles way. However, in the case of Example 27, the difference
can be significant (especially since the the pills probably come in units of 5 mg).
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