
Chapter 1

Probability, Percent, Rational Number

Equivalence

Traditionally, seventh grade starts by gathering up everything students have learned about numbers and arithmetic,
in a way that increases their flexibility with operations while illuminating the underlying algebraic structure of the
number system. Experience shows that this traditional approach is problematic: students, weak as well as strong,
find this a dull review of either what they already know or what they are unlikely to learn through repetition. For
this reason, cognizant that review is essential, it is desirable to embed this review in the introduction of a new
topic. We choose probability as the new topic, with the idea that its extrinsic interest will attract the students’
attention, while exhibiting the importance of arithmetic operations in context. Another reason for starting the year
with basic probability activities is to develop a culture of thinking about mathematics as a way to investigate real
world situations. A third reason is that such activities at the beginning of the year can help foster a classroom
culture of discussion and collaboration.

Throughout this chapter students are provided with opportunities to review and build, based on knowledge from
previous grades, fluency with fractions, percents, and decimals and recognize equivalent forms of rational num-
bers. Students should understand that fractions, percents and decimals are all relative to an agreement on what
is the whole or unit. Students will also compare and order fractions (both positive and negative).The chapter
concludes with a section specifically about solving percent and fraction problems, including those involving dis-
counts, interest, taxes, tips, and percent increase or decrease. As students model mathematics, they begin to apply
properties of operations (the “field axioms”) informally, leading to the formalization in chapter 3.

This is students’ first formal introduction to probability. They will have worked with data sets before, looking at
various ways of representing the data to get the best information possible. In seventh grade, students have their
first exposure to statistics, which can be described as the set of tools for the analysis of data. Probability lays
the theoretical foundation for statistics; yet another reason to start 7th grade with this subject.We use statistics
to come to a qualitative statement of what the data tell us about a certain population. So, a medical study of
the e↵ectiveness of medicine A in the treatment of disease B will end up with a conclusion of this kind: “the
data suggest that A is 80% e↵ective in curing subjects of disease B, while causing adverse side e↵ects in 4% of
the a✏icted.” Those percentages are found using the basic principles of probability, which consist of assigning
numerical values to the probability of a specific set of outcomes of a situation (in this case, having contracted
disease B).

In brief, probability is a branch of mathematics that provides the foundation for a statistical analysis of data. That
analysis, however,is at the heart of what we call the scientific method: pose a hypothesis, gather data, analyze the
data, estimate the likelihood that the hypothesis is verified.

This is students’ first formal introduction to probability. In the first section students will study chance processes,
experiments or situations for which they know the possible outcomes but do not know which outcome will occur
at any run of the experiment. Students will look at probabilities as ratios, represented by fractions, decimals, or
percents (part:whole). In Chapter 4 we will talk about part:part relationships where distinguishing between these
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relations is going to be important. Eventually, it becomes clear that we can (depending upon where we want to
have the emphasis) take either a part:whole or a part:part relationship and convert it to the other. For example, if
3/5 of the class are girls we know that 2/5 are boys and the ratio of girls to boys is 3:2. Later, in chapter 7, students
will discuss “odds” which are part:part relationships.

Probabilities are often determined from the results or outcomes of experiments. They will learn that the set of
all possible outcomes for an experiment is a sample space. They will recognize that the probability of any single
event (a subset of the sample space) can be expressed in terms of impossible, unlikely, equally likely, likely, or
certain or as a number between 0 and 1, inclusive. Students will focus on two concepts in the probability of an
event: experimental (empirical) and theoretical. They will understand the commonalities and di↵erences between
experimental and theoretical probability in given situations. This will conclude the first section.

While studying probability, students continue their study of rational numbers. They will convert rational numbers
to decimals and percents and will look at their placement on the number line. This lays the foundation for 8th
grade where the real line representation of numbers leads to the realization of the existence of irrational numbers
inorder to complete the line. With this in mind, in the next section of this chapter, students solidify and practice
rational number sense through the careful review of fractions, decimals and percents. The two key objectives of
the second section are a) students should confidently articulate relationships among equivalent fractions, decimals,
and percents using words, models, and symbols and b) students should understand and use models to find portions
of di↵erent wholes.

The concept of equivalent fractions naturally leads students to the issues of ordering and estimation. Ordering pos-
itive and negative fractions will be connected to the number line. It is important that students develop estimation
skills in conjunction with both ordering and operating on positive and negative rational numbers. Lastly, students
look at percent as per hundred: a fraction with a denominator of 100. Percent and fraction contexts in this section
will be approached intuitively with models.

The chapter concludes with a section in which students continue to solve contextual problems with fractions,
decimals and percent but begin to transition from relying solely on models to writing numeric expressions. In
subsequent chapters students will extend their understanding by writing equations and proportional equations
using variables.

Section 1.1: Investigate Chance Processes. Develop/Use Probability Mod-

els

The mathematics emphasized in this chapter reflects the importance of probabalistic concepts in the world of
today. References to probability are all around us, including weather forecasting. Suppose you have some outdoor
plans made for a particular day and the weather report says that the chance of rain is 70%. Should you still go
ahead with your plans or should you cancel them for another day? Another example of probabilities in daily life
comes from the world of sports. A batting average involves calculating the probability of a player hitting the ball.
That is, a batting average is a statistic (hits ÷ atbats) that is developed from past history. However, it is used in a
theoretical sense: a batter with a .300 average is 50% more likely to get on base as a batter with a .200 average. So
let’s say your favorite baseball player is batting .300. This means that when he or she goes up to the plate, there is
only a 30% chance of getting a hit! Playing the lottery is another instance of probability in real life. Millions of
people around the world spend their money on lottery tickets in hopes of winning the big jackpot and becoming
millionaires. But do these people realize how low their chances of winning actually are?

Probability is a vehicle for students to engage in a new mathematical topic while reviewing and practicing whole
number and rational number arithmetic. We are also preparing the way for the study of statistical inference
(Chapter 7), given that probability provides a mathematical description of randomness, such as the chance variation
observed in the outcomes of randomized experiments and random samples. This development occurs as students
consider and discuss with their peers the outcomes of a variety of probabilistic situations.
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The origins of probability. In the 15th century, as mathematics was beginning to be realized as a vehicle for
understanding how things work, attention was focused on finding ways to calculate the likelihood of events.
Most historians think that this study originated in an unfinished dice game. The French mathematician Blaise
Pascal received a letter from his friend Chevalier de Méré, a professional gambler, who attempted to make money
gambling with dice. Chevalier de Méré’s predicament involved two games of dice. In the first one, he made money
by betting that he could roll a 6 on at least one of four consecutive rolls of a die. Empirical experience led him to
believe that he would win more times than he would lose. He reasoned correctly that the chance of getting a six
in one roll of a die is 1

6 . He then incorrectly thought that in four rolls of a die, the chance of getting one six would
be 4 ⇥ 1

6 =
2
3 . Though his reasoning was faulty, he made considerable money over the years in making this bet.

Today we know that the probability of winning this bet is 1 �
⇣

5
6

⌘4
, or 51.8%.

When folks would no longer bet on this proposition, de Méré modified the game by betting even money (original
bet is either doubled or lost) that double 6’s would turn up at least once in 24 throws of a pair of fair dice. This
seemed like a good bet, but he began losing money. He reasoned correctly that the chance of getting a double six
in rolling a pair of dice is 1

36 . However, he erred in thinking that in 24 rolls of a pair of dice, the chance of getting
one double six would be 24

36 =
2
3 .

Based on empirical data (he lost a lot of money), he knew something was not quite right in the second game
of dice. So he challenged his renowned friend Blaise Pascal to help him find an explanation. Pascal shared the
problem with Pierre Fermat and together they solved the problem, which is often marked as the beginning of the
era of the mathematical theory of probability.

Extension. One more good reason for starting with probability in a review of fraction arithmetic is that it provides
a context for understanding the operations of addition and multiplication of fractions. The Chevalier’s misunder-
standing of addition led to his undoing. In the first instance he reasoned that, since the probability of rolling a six
in one roll is 1/6, then the probability of rolling a six in two rolls in twice that: 1/3, and in four rolls, 2/3 . Appar-
ently, he assumed that in repeating an experiment, the probability of at least one favorable outcome increases, so
the probabilities must add. If he extended that one more time he would have seen that that assumption is in error,
for the probability of rolling a six in 3 rolls would be 1/3+1/3+1/3 = 1. But we know that it is quite possible to
roll a die 3 times and not get a six; in fact it is conceivable that we could roll the die 500 times and never see a six.

When he went to Pascal to find out what was wrong (and how to make it right). Pascal surely did this mind
experiment and saw fairly soon that, in a question like this, probabilities do not add. But then, what? His thinking
might have gone this way: it is pretty clear that, when we repeat an experiment, the probabilities of a favorable
outcome every time multiply. For example, suppose we ask: what is the probability of getting a six in two
consecutive rolls? Well, the probability of rolling a six in one roll is 1/6. So one-sixth of the time (on average) we
roll a six on the first roll. Now, for the second roll, only those one-sixth of the rolls count: we will roll a second
six one-sixth of the times we have already rolled a six. 1/6 of 1/6 is 1/36.

Pascal moved forward with this reasoning: if we want a certain outcome to happen every time in a series of
experiments, then the probabilities multiply. But, we are not asking for success every time, we are asking only
for one success in the series. Surely the probability increases as we increase the number of rolls, but probabilities
do not add. Then how do we calculate the probability? Here comes the genius of Pascal: he asked: what is
the probability that the Chevalier loses? Well, it is the probability of rolling a 1,2,3,4 or 5 in every one of the
four consecutive rolls. The probability of rolling any number other than a six is 5/6, therefore, the probability
of not rolling a six in four consecutive rolls is (5/6)4. The Chevalier wins precisely when he does not lose; so
the probability of rolling at least one six in four consecutive rolls is 1 � (5/6)4 = 0.517747. So, even though his
thinking was faulty, his betting strategy was winning: in 1000 games, he could expect to win about 518 of them,
so he could keep playing the game.

In the second game, in a roll of a pair of dice, there are a total of 36 possible outcomes (the six outcomes of the
first die combined with each of the six outcomes of the second die). Out of these 36 outcomes, only one of them
is a double six. So, the probability of getting a double six is 1

36 in rolling a pair of dice. Likewise, the probability
of not getting a double six is 35

36 . The probability of getting no double six in 24 rolls of a pair of dice is:
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P(at least one double six in 24 rolls) = 1 � P(no double six in 24 rolls)

= 1 �
 

35
36

!24

= 0.4914

Thus the probability of getting at least one double six in 24 rolls of a pair of fair dice is 0.4914. On average, de
Méré would only win about 49 games out of 100 and his opponent would win about 51 games out of 100 games.
Clearly, the Chevalier would, in the long run, lose and lose big. And he did.

As we have seen above, when we repeat an experiment, looking for a certain outcome every time, probabilities
multiply, but if we look for that outcome at least once in the series, they do not add. Then, when do probabilities
add? Let’s examine some situations in the one die-rolling experiment. What is the probability of rolling an odd
number? In the sequence {1, 2, 3, 4, 5, 6} there are three odd numbers and three even numbers, so we should expect
that half the time we roll an odd number: that is, the probability is 1/2. Notice that this is (1/6) + (1/6) + (1/6);
that is the sum of the probabilities of rolling a 1 or a 3 or a 5. What is the probability of rolling a prime number?
Again, there are three primes: {2, 3, 5}, so the probability is 1/2, which is the sum of the probabilities of rolling a
2,3 or 5. So, here again probabilities are adding. Now let’s ask: what is the probability of rolling an odd number or
a prime. That means, rolling anything but a 4 or a 6, so the probability is 2/3. Since 2/3 , 1/2+ 1/2, probabilities
now don’t add. The reason for this is that the two di↵erent questions have the answers 3,5 in common, so those
answers have been counted twice. Compensating for that, we have 2/3 = (1/2 + 1/2) � 1/3): a true statement!

This is a long story which we cannot complete here; but we can here begin the discussion. The important thing
for students is that, in calculating probabilities, addition is much more di�cult than multiplication - just as it is for
fractions.

End Extension.

Basic concepts. Probability is about the likelihood of the occurrence of event; attempting to put a numerical
measure of the chance that it will occur. In probability, we study chance processes, which concern experiments
or situations where we know which outcomes are possible. An experiment is an activity whose results can be
observed and recorded. Each of the possible results of an experiment is an outcome. If we toss a fair coin (i.e.
heads and tails are equally likely to occur therefore it’s a fair coin), there are two distinct possible outcomes: head
(H) and tails (T ).

The set of all possible outcomes for an experiment is a sample space. The sample space S for rolling a fair die is
S = {1, 2, 3, 4, 5, 6}. An event is a collection of outcomes, a set in the sample space. The set of all even-numbered
rolls {2, 4, 6} is a subset of all possible rolls of a die {1, 2, 3, 4, 5, 6} and is an event.

So, how do you measure the chance of an event? There are two ways: theoretical and experimental. By theoretical,
we refer to what can be deduced through logical thinking. By experimental we refer to what is observed as
we repeat the experiment over and over. Let’s develop these concepts, starting with this question: What is the
probability of rolling a six with a fair die?

With a roll of a fair die, there are six possible outcomes 1, 2, 3, 4, 5, 6. Each outcome is one out of six equally likely
outcomes; we express this by writing that each outcome has a probability of 1

6 . Hence, the theoretical probability
of rolling a six with a fair die is 1

6 . This suggests that the correct definition of the probability of an event (where
all outcomes are equally likely) is:

p(E) =
Number of Outcomes in the Event

Number of Possible Outcomes
.

We may now actually roll the die a number of times, and keep track of the number of times the desired event (a 6)
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occurs. This leads to what we describe as the experimental probability, the fraction of favorable occurrences over
all occurrences :

Number of Observed Occurrences of the Event
Total Number of Trials

.

Although it would be impossible to conduct an infinite number of trials, we can consider the long-run relative
frequency as an increasingly close approximation to the actual probability or the theoretical probability as the size
of the data set (sample) increases. This is referred to as the Law of large numbers. It is also known as Bernoulli’s
theorem, in honor of Jakob Bernoulli (1654-1705). How many trials are enough? It depends upon how sure you
want to be that the die is fair: if you want 80% confidence, you will have to roll the die a lot more than if you are
satisfied with 60% confidence.

Approximate the probability of a chance event by collecting data on the chance process that produces it and
observing its long-run relative frequency, and predict the approximate relative frequency given the probability.
For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but
probably not exactly 200 times. 7.SP.6

An investigation regarding the law of large numbers was conducted by John Kerrich during World War II. In April
of 1940, while visiting family in Copenhagen, John Kerrich was caught in the Nazi invasion and was imprisoned.
To pass time, Kerrich tossed a coin 10,000 times. On his release Kerrich published an account of his experiments
in a short book entitled An Experimental Introduction to the Theory of Probability. A sample of his results is in
Table 1.1. The relative frequency column on the right is obtained by dividing the number of heads by the number
of tosses of the coin.

Number of Number of Relative
tosses Heads Frequency

10 4 0.400
50 25 0.500

100 44 0.440
500 255 0.510

1,000 502 0.502
5,000 4,034 0.504
10,000 5,067 0.507

Table 1

As the number of tosses increased, Kerrich obtained heads close to half the time. The long-run relative frequency
for Kerrich’s tosses gives a result of 5,067/10,000, or approximately 1

2 .

Some probabilities cannot be determined by the analysis of possible outcomes of an event; instead, they can only
be determined through gathering empirical data. Why? Because the outcomes may not be equally likely and we
have no way of determining the likelihood of the outcomes without experimentation. Another reason could be
that there are many more factors involved over which we have no control (as in weather forecasting). As another
example, consider an experiment to see how often a flipped Hershey’s Kiss or a thumb-tack will land on its base.

In Chapter 7 we will see how to use statistics to estimate probabilities in a given population by examining a sample
of the population. Generalizations about a population from a sample are valid only if the sample is representative
of that population, and a sample of 1000 people provides more reliable and convincing data about the larger
population than does a survey of 5 people. Subsequently the larger the number of trials (people surveyed), the
more confident you can be that the data reflect the larger population.

Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the
event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a
probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a
likely event. 7SP5
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Previously we made a statement that probability is about how likely an event is. Let us further explore this idea
through some examples.

Example 1.

A fair die is tossed. Let S = 1, 2, 3, 4, 5, 6. Let’s calculate each of the following probabilities.

a. the event A that the outcome is a 5;
b. the event B that the outcome is an even number;
c. the event C that the outcome is a number greater than 20;
d. the event D that the outcome is a number less than 20.

Solution. The expression P(X) represents the probability (or likelihood or chance) that event X will
occur. You can quantify probability with a fraction, percent, or decimal number. Given, each of the 6
numbers in set S has an equal chance of being rolled,

a. If we replace X by A, the outcome is 5, then P(A) = 1
6 .

b. If we replace X by B = {2, 4, 6}, then P(B) = 3
6 =

1
2 .

Why is P(B) = 1
6 +

1
6 +

1
6 =

3
6 , but in de Mérés case this calculation failed? We will explore this further

in the next few pages.

c. The event C is impossible, since the largest possible outcome is 6. Thus the set C has no members
(this is called the empty set, denoted by ?), then P(C) = 0

6 = 0.

d. If we replace X by D, the event D is certain to occur. D is the whole sample space, S , so we say
the chance of D happening is 1, that is D = S , so P(D) = 6

6 = 1

To clarify, in Example 1(c), event C is the empty set. An event such as C that has no outcomes is an impossible
event and has a probability of 0. In Example 1(d), event D consists of rolling a number less than 20. Because
every number in S is less than 20, the P(D) = 1. An event that has a probability 1 is a certain event.

The number line is an important visual model of how likely an event can be.

0 1
2

1

Impossible Equally likely Certain

Very unlikely Very likely

In summation, the likelihood that an event will occur is expressed by a number called the probability of an event,
where the probability ranges from 0 (impossibility) to 1 (certainty), or equivalently, when they are given as per-
centages, between 0% and 100%. A probability of 0% means that the event cannot possibly occur, as seen in
Example 1(c). A probability of 100% means that the event is certain to occur, as seen in Example 1(d), and the
greater the probability, the more likely an event is to occur. If we flip a coin, the probability that it will land up is
0.5 or 50%, since we expect, either on the basis of the coin’s symmetry or by data gathered from past experience,
that half the time we obtain heads and half the time tails.

A probability of 50% means the event is as likely to occur as not to occur. In particular, we note:

If A is any event and S is the sample space, then 0  P(A)  1.
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The discussion with regards to a fair die being tossed, resulted in distinct possible outcomes of a chance process
that were all equally likely. If each possible outcome is equally likely, then we call a probability model for such a
process a uniform probability model. If there are n possible outcomes, the probability of each outcome is 1

n .

Consider again Example 1. A toss of the die results in any of the sides equally likely to land face up. So the
probability of rolling a 1 is equal to the probability of rolling a 2, which is equal to the probability of rolling a 3,
and so on. That is,

P(roll a 1) = P(roll a 2) = P(roll a 3) = P(roll a 4) = P(roll a 5) = P(roll a 6).

Mathematically this means that given the sample space S = {x1, x2, . . . , xk}, and outcomes that are equally likely,
then P(x1) = P(x2) = . . . = P(xk), where P(x) represents the probability of outcome x.

Additionally, notice

P(roll a 1) = 1
6 , P(roll a 2) = 1

6 , P(roll a 3) = 1
6 , P(roll a 4) = 1

6 , P(roll a 5) = 1
6 , P(roll a 6) = 1

6 .

When you roll a fair die, the probability of rolling a 1 or a 2 or a 3 or a 4 or a 5 or a 6 (Example 1(d)) the result is
1. Therefore,

P(roll a 1) + P(roll a 2) + P(roll a 3) + P(roll a 4) + P(roll a 5) + P(roll a 6) = 1,

hence
P(x1) + P(x2) + . . . + P(xk) = 1.

Example 2.

Let’s consider additional questions relating to Example 1. A fair die is tossed. Let S = {1, 2, 3, 4, 5, 6}.
Calculate each of the following probabilities. .

a. the event that the outcome is a 1, 2, 3, 4, or 6;

b. the event that the outcome is a 5.

Solution.

a. Since the outcomes 1, 2, 3, 4, or 6 are distinct possible outcomes, then the probability of rolling a
1, 2, 3, 4, or 6 is the sum of the probabilities of rolling a 1, of rolling a 2, of rolling a 3, of rolling
a 4, and of rolling a 6. That is, 1

6 +
1
6 +

1
6 +

1
6 +

1
6 =

5
6 , so the P(1, 2, 3, 4, or 6) = 5

6

b. P(5) = 1
6

Yet, is there another way of looking at the probability of rolling a 5, given the information gathered in finding the
probability of rolling a 1, 2, 3, 4,or 6? In Example 2(b), let’s rephrase the question.

Calculate the probability of the event that the outcome is not a 5.

Given that the P(roll a 1) + P(roll a 2) + P(roll a 3) + P(roll a 4) + P(roll a 5) + P(roll a 6) = 1, then
P(1, 2, 3, 4, or 6) + P(5) = 1, which results in the P(5) = 1 � P(1, 2, 3, 4, or 6). Are we at all surprised at the
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outcome? No, because we’ve calculated P(5) before. More importanty, we should have used this logic to calculate
the probability that the outcome is a 1,2,3,4,6. This strategy, computing the probability of an event happening by
instead computing the event it won’t happen, and subtracting that from 1, is often the easiest way to proceed. Let
us summarize the principles behind this.

Two events are mutually exclusive if they have no outcomes in common. For instance, in Example 1, event A
(rolling a 5) and event B (rolling an even number: 2, 4, 6) are mutually exclusive events because no outcome is in
common to both events. If we say that event F is rolling a number less than 5 (namely 1, 2, 3, 4), then events B
and F would not be mutually exclusive because they have outcomes in common (rolling a 2 or 4).

Two events, X and Y , are complementary if they are mutually exclusive and together they make up the entire
sample space.. Said another way, X and Y are complementary if everything in the sample space not in X is in Y .
Because of this, the complement of X is referred to as “not X.” Therefore,

P(X) + P(not X) = 1 so P(not X) = 1 � P(X) and P(X) = 1 � P(not X) .

Nonetheless, the example shows that counting the complementary event is especially e↵ective for counting where
an “at least” condition must be satisfied, although in Chapter 1 students will be looking for a pattern or structure
to emerge.

Example 3.

Flip a coin four times. What is the probability of getting at least one head?

Solution. A tree diagram and an organized list can be constructed as in Figure 1. For each of the
two outcomes for the first flip, the tossing of the coin a second time has two possible outcomes (because
the outcome of flipping the coin a second time does not depend on the outcome of flipping the coin the
first time), and so on. So all together, there are 2 ⇥ 2 ⇥ 2 ⇥ 2 = 24 = 16 ways in which the tosses may
occur. There are many ways in which one or more heads can occur. However, the complementary event
is when no heads occur. There is just one way to get no head, namely, if all 4 tosses are tails. Thus, there
are 16 � 1 = 15 ways in which at least one head appears in the four tosses. Therefore, the probability of
getting at least one head is 15

16 .

T

T
T

T TTTT
H TTT H

H
T TT HT
H TT HH

H
T

T T HTT
H T HT H

H
T T HHT
H T HHH

H

T
T

T HTTT
H HTT H

H
T HT HT
H HT HH

H
T

T HHTT
H HHT H

H
T HHHT
H HHHH

Figure 1

Example 4.

Flip a coin four times. What is the probability of getting heads for all four flips? One approach is to
think in terms of a sequence of flips, where as soon as you get tails, you stop.

Solution.
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1. The probability of coming up heads on the first flip is 1/2. If you get tails on the first flip, you
might as well stop, because you cannot possibly get four heads. So, half the time you stop, and
half the time you keep going.

2. Assuming we kept going, then we flip the coin a second time. Again, the probability of heads is
1/2. Again, we only keep going if it comes up heads. So half the time we keep going. Overall,
the chance that we will keep going is 1/2 of 1/2, or 1/4.

3. By now, 3/4 of the time we will have stopped, and 1/4 of the time we will have moved on to flip
the coin a third time. Again, the probability of heads is 1/2. So, the probability that we will keep
going is 1/2 of 1/4, or 1/8.

4. Finally, we have the fourth coin flip. We only get to this point 1/8 of the time. Again, the
probability of heads is 1/2. The probability of four heads is 1/2 of 1/8, or 1/16.

As a shortcut, we could say that the probability of getting heads on any one throw is 1/2. The probability of getting
four heads in a row therefore is (1/2)(1/2)(1/2)(1/2), or (1/2)4. This example engages students in conjecturing
about the multiplication rule of probability, an intuitively plausible, but more advanced probability technique
developed in high school. Additionally, it is a better method, for it is less tedious than drawing a tree diagram. In
particular, using example 2, the probability of getting at least one “tails” in four flips is 15/16 (because “tails” and
“heads” are interchangeably probable). So, we can conclude directly from Example 2, that the probability of not
getting one “tails,” which is the same as getting four heads is 1/16.

In the above example, the four-event experiment (or multistage experiment) requires four actions to determine an
outcome. This is an example of a compound event: when a particular experiment is executed two or more times.
In this case there is a question to consider. Does the occurrence of the event in one stage have an e↵ect on the
occurrence of the event in the other? An important factor in calculating probabilities for multistage experiments
is the distinction between independent and dependent outcomes at a stage. If you flipped a coin 10 times in a
row and all 10 flips came up heads, would you think that your next flip is more likely to be a tail because a tail is
“due”? Saying “a tail is due”, or “just one more go, my luck is due” is called The Gambler’s Fallacy. Some people
think “it is overdue for a tail”, but a coin does not “know” it came up heads before; hence the next toss of the coin
is totally independent of any previous tosses. In fact, on your next flip you are just as likely to get a tail as a head.
There is nothing in the flipping history of the coin that can influence the next flip. The outcome of one coin flip is
independent of the outcome of any other coin flip. In other words, the occurrence or nonoccurrence of one event
has no e↵ect on the other. In contrast, a dependent event is a second event whose result depends on the result of a
first event, such as taking out a marble from a bag containing some marbles and not replacing it, and then taking
out a second marble.

Example 5.

This illustration of “dependence” is that of extracting marbles from a bag. Suppose that a bag contains
16 marbles, 9 of which are green and 7 are red. The experiment is that of extracting a marble from the
bag. We can see (taking the quotient of favorable outcomes to possible outcomes) that the probability
that the extracted marble is green is 9/16, and that it is red is 7/16. Now, suppose the experiment is
repeated a second time. The probabilities now depend upon whether or not the marble extracted the
first time is replaced. If it is, the probabilities of the color of the second marble are the same as the
first. But if the marble is not replaced, the probability changes, depending upon the color of the first
extracted marble. If it was green, then there are 15 marbles in the bag, 8 green and 7 red; and if it was
red, there are 9 greens and 6 reds. This is an issue that will be explored further in high school; in 7th
grade, students should see and understand the di↵erence.

We can use the organized list and tree diagram of Figure 1 to calculate other probabilities as well. For example,
what is the probability of getting exactly three heads and one tail when we toss the coin four times? Three heads
and one tail occur in 4 of the 16 outcomes - namely, HHHT,HHT H,HT HH, and T HHH. So the probability that
either one of these four outcomes will occur is
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1
16
+

1
16
+

1
16
+

1
16
=

4
16
=

1
4

Determining the probability of the outcome of getting exactly three heads and one tail allows students to explore
and conjecture about the addition rule of probability as they continue to refine their understanding.

Notice that the probability of getting all four heads versus the probability of getting exactly three heads and one
tail versus the probability of getting at least one head represents an unfair game in which the events are not equally
likely. All sixteen outcomes are equally likely, however the probability of getting at least one head versus getting
exactly 3 heads and one tail reveals that for three heads, HHHT is di↵erent from HHT H because order matters.
If we were to flip four coins at once, then HHHT is the same as HHT H. This distinction will be made clear in
secondary mathematics.

In order for students to determine how likely an event is, it is important that all possible outcomes are generated –
for example, by modeling, using tools such as organized lists, tables, histograms or tree diagrams. This builds a
strong foundation for the more advanced probability techniques that will develop in 7th grade and beyond.

Section 1.2: Equivalence and Conversion in Rational Number Forms (frac-

tion, decimal, percent).

In this section students solidify and practice rational number sense through the careful review of fractions, decimals
and percent. The two key objectives of this section are a) students should be confidently able to articulate with
words, models and symbols, relationship among equivalent fractions, decimals, and percent and b) students should
understand and use models to find portions of di↵erent wholes.

The concept of equivalent fractions naturally leads students to the issues of ordering and estimation, and order-
ing positive and negative fractions will be connected to the number line. It is important that students develop
estimation skills in conjunction with both ordering and operating on positive and negative rational numbers.

Lastly, students look at percent as being a fraction with a denominator of 100. Percent and fraction contexts in
this section will be approached intuitively with models. In Section 1.3 students will begin to transition to writing
numeric expressions.

In Grade 6 students learn that the number line expands to the left of zero, exploring integers and negative fractions
and decimals. They learn how to place them on the number line and how to compare numbers. They get a sense,
in terms of the number line, of the interpretation of the fraction p/q as the adjunction of p copies of the line
segment of length 1/q. In Grade 7 the students learn how to represent arithmetic operations on the number line,
and understand that the rules of arithmetic as they know them, extend to the system of rational numbers.

Seventh grade, to a great extent, is retrospective; that is, we focus on the structure of the mathematics already
learned and how the (pictorial/concrete) models reveal how quantities are related. On the other hand, Eighth grade
is summative: by exploring operations with numbers as points on the number line, students are naturally led to
irrational numbers and begin to get a sense of the completeness of the real-number system.

The word fraction comes from the Latin “fractio” or “fractus” meaning “to break” or “broken.” The use of fractions
began with human observations of nature to express quantities that were less than a whole unit, such as divisions
of the day. As early as 2000 BCE., the Babylonians used fractions; however, the denominators of their fractions
were always powers of 60, corresponding to their base system. Evidence of the early stages in the development
of fractions can be found in Egyptian mathematics in the Rhind Mathematical Papyrus: out of 87 problems on the
Rhind, only 6 did not involve fractions.

Fraction ideas appear to have been used in many cultures.Our method of writing fractions can be attributed to the
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Hindus, most notably the Indian mathematician Aryabhata. By the year 1000 CE, Arabs had introduced the use
of the fraction bar in their writings. Fibonacci was the first European mathematician to use the fraction bar as it is
used today.

In early grades students study whole numbers as corresponding to points on the number line. Interpreting numbers
as points on the number line allows for fractions to be seen as measurements with new units, created by partitioning
the whole number unit into equal pieces. Recall that a fraction is a point on the number line represented by the
quotient of a whole number by a counting number; a rational number is then a point on the number line represented
by a quotient of an integer by a counting number. Therefore, integers and then the rational numbers are associated
to points in the line.

It is instructive to recall the actual process of identifying number with a point on the line. With a straight edge,
draw a horizontal line. Given any two points a and b on the line, we say that a < b if a is to the left of b. The piece
of the line between a and b is called the interval between a and b. It is important to notice that for two di↵erent
points a and b we must have either a < b or b < a. Also, recall that if a < b we may also write that as b > a.

Pick a point on a horizontal line, mark it and call it the origin, denoted by 0. Now place a ruler with its left end
at 0. Pick another point (this may be the 1 cm or 1in point on the ruler) to the right of 0 and denote it as 1. We
also say that the length of the interval between 0 and 1 is one unit. Mark the same distance to the right of 1, and
designate that endpoint as 2. Continuing on in this way we can associate to each positive number a point on the
line. Now mark o↵ a succession of equally spaced points on the line that lie to the left of 0 and denote them
consecutively as �1,�2,�3, . . . In this way we can imagine all integers placed on the line.

�3 �2 �1 0 1 2 3

We can associate a half integer to the midpoint of any interval; so that the midpoint of the interval between 3 and
4 is 3.5, and the midpoint of the interval between �7 and �6 is �6.5. If we divide the unit interval into three parts,
then the first part is a length corresponding to 1/3, the first and second parts correspond to 2/3, and indeed, for
any integer p, by putting p copies end to end on the real line (on the right of the origin if p > 0, and on the left
if p < 0), we get to the interval representing p/3. We can replace 3 by any positive integer q, by constructing a
length which is one qth of the unit interval. In this way we can identify every rational number p/q with a point on
the horizontal line, to the left of the origin if p/q is negative, and to the right if positive.

Note that, for any q, if p is a multiple of q, say p = nq, (with n an integer), then the point corresponding to the
fraction p/q is precisely the integer point n. More generally, observe that if p/q and r/s are equivalent fractions,
then the points corresponding to p/q and r/s are the same point.

Extension

In the discussion above, we describe how to find points on the number line to represent fractions p/q. This requires
partitioning the unit interval on the number line into q equal parts. Students may be interested in the construction
that accomplishes that. On the next page, Figure 2 illustrates how to do that with q = 5. In that figure, the line
segment AB represents the unit interval on the real line, with A at the origin and B at 1. Now draw another line
passing through the point A. On that new line mark o↵ 5 copies of any length as shown; however if one picks a
length that appears to be close to 1/5, the construction will be easier. Now draw a line from the last point (denoted
“5” in the figure) to the point B. Draw lines parallel to that line from each of the the division points 1, 2, 3, 4.
Then those lines will intersect the interval AB in points that segment AB in 5 equal portions. Of course “5” can be
replaced by any whole number q.

Actually doing this easily persuades that the construction works. The reason why it works is called The Funda-
mental Theorem of Similarity and will be introduced in grade 8 and fully explained in grade 10.
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Figure 2

End Extension

Convert a rational number to a decimal using long division; know that the decimal form of a rational number
terminates in 0s ore eventually repeats. 7.NS.2d

Decimals are special fractions, those with denominator 10, 100, 1000, etc. We think about decimals as “filling in”
the locations on the number line between the whole numbers. We can think of plotting decimals on the number
line in successive stages. At the first stage, the whole numbers are placed on a number line so that consecutive
whole numbers are one unit apart.

�3 �2 �1 0 1 2 3

At the second stage the decimals that have entries in the tenths place, are spaced equally between the whole
numbers, breaking each interval between consecutive whole numbers into 10 smaller intervals each one-tenth unit
long. Enlarging the interval between 0 and 1, we get:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90 1

And so on. Enlarging the interval between 0 and 0.1, we get:

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.090 0.1

We can think of the stages as continuing indefinitely. The digits in a decimal are like an address. When we read a
decimal from left to right, we get more and more detailed information about where the decimal is located on the
number line. These finer and finer partitions constitute a sort of address system for numbers on the number line:
0.543 is, first, in the neighborhood between 0.5 and 0.6, then in part of that neighborhood between 0.54 and 0.55,
then exactly at 0.543. It’s very similar to specifying a geographic location by giving the country, state, county, zip
code, street, and street number.

Now, what points on the line are represented by terminating decimals?

Rational numbers that have finite decimal expansions (terminating decimals) can be found using long division; we
find that such a number can be expressed as a fraction whose denominator is a base 10 unit (10, 100, 1000, etc.):

a
b
=

n
10

or
n

100
or

n
1000

or . . .
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for some whole number n.

In this case then,

10a
b
= n or

100a
b
= n or

1000a
b
= n and so on . . .

We can find the whole number n by dividing b successively into 10a, 100a, 1000a, and so on until there is no
remainder and the process terminates (at some point there is no interval left over). The point is represented by a
terminating decimal.

How do we find the decimal expansion of a rational number p/q?

Example 6.

Express 7
16 as a decimal using long division.

Solution.

4
16

�
70
64

6

43
16

�
700
640

60
48
12

437
16

�
7000
6400
600
480
120
112

8

4375
16

�
70000
64000

6000
4800
1200
1120

80
80
0

As illustrated; 70, 000 = 16 ⇥ 4375, which means that 7
16 =

4375
10000 = .04375.

The finite decimals are the rational numbers that eventually come to fall exactly on one of the tick marks in this
decimal address system. But now, this doesn’t always work.

Example 7.

2
3 is always sitting two-thirds of the way along the third subdivision.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90 0.1

and then

0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

and so on. . .

0.660 0.661 0.662 0.663 0.664 0.665 0.666 0.667 0.668 0.669 0.670
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It is 0.66 plus two-thirds of a thousandth, and 0.666 plus two-thirds of ten-thousandth, and so on. The
decimals 0.6, 0.66, 0.666 are successfully closer and closer approximations to 2

3 , that is, we say 2
3 has

an infinite decimal expansion consisting of entirely 6’s in which we place a bar over the 6 to indicate
that it repeats indefinitely: 0.6.

With the case of negative rational numbers the progression would be as follows; � 2
3 is always sitting two-thirds

of the way along the third subdivision. It is �0.66 minus two-third of a thousandth, and �0.666 minus two-third
of ten-thousandth, and so on. The decimals �0.66,�0.666,�0.6666 are successfully closer and closer approxima-
tions to � 2

3 , that is, we say � 2
3 has an infinite decimal expansion consisting of entirely 6’s in which we place a bar

over the 6 to indicate that it repeats indefinitely : 2
3 = 0.6.

-0.1-0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9 0-1

and then. . .

-0.60-0.61-0.62-0.63-0.64-0.65-0.66-0.67-0.68-0.69-.70

and finally. . .

-0.660-0.661-0.662-0.663-0.664-0.665-0.666-0.667-0.668-0.669-.670

How do we know if the fraction will terminate or repeat?

First let us look at terminating decimals. A terminating decimal, like .275, is a sum of fractions where each
denominator is a power of ten (prime factors 2’s and 5’s). So,

.275 =
2

10
+

7
100
+

5
1000

=
2

10
+

7
102 +

5
103 .

Now, if we put these terms over a common denominator, we get

2(10)2 + 7(10) + 5
103 =

275
103

In the same way, .67321 becomes

67321
105 ,

In general a terminating decimal leads to a fraction of the form A/10e where A is an integer and e is a positive
integer. So, if a decimal terminates after e terms, it can be written as a fraction with denominator 10e. Now, since
10 = 2 · 5, we can write this as 2e · 5e, and we conclude that a terminating decimal can be written as a fraction
whose denominator has prime factors only 2 and 5. On the other hand, we see that any fraction whose denominator
(in simplest form) is a product of 2’s and 5’s has a terminating decimal. Let A/(2a5b) be such a fraction (A is an
integer). Suppose a = b. Then our fraction is
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A
2a · 5a =

A
10a

so the decimal terminates at the ath place. If on the other hand a , b we can multiply numerator or denominator
by a power of 2 or 5 so as to get both exponents in the denominator the same. Let’s illustrate:

A
26 · 59 =

23

23
A

26 · 59 =
8A

2959 =
8A
109 ,

A
26 · 54 =

52

52
A

26 · 54 =
25A
2656 =

25A
106 .

This discussion may be di�cult for students to understand, as they have not yet been exposed to integer exponents
(this comes up in eighth grade). Yet students have had experience with prime factors in Grade 6 and can intuitively
understand that when the denominator (in simplest form contains only prime factors of 2’s and/or 5’s, the decimal
will terminate.

To convert a
b (where a and b are integers) to a decimal we calculate a ÷ b by long division. At each step in the

long division algorithm, the remainder r is a whole number with 0  r < b. If r = 0, then the long division
algorithm stops at that step, representing a terminating decimal. Otherwise r is a number from the following list:
1, 2, 3, . . . , b � 1. By the bth step in the long division, some remainder has to appear again. When that happens,
the process repeats, so that we start generating the same sequence of remainders that followed the first appearance
of that remainder. And so on, the process continues to recycle forever, and we obtain a repeating decimal.

Let’s follow this through for 6/11. Start out by the division of 6 by 11. We get an approximation of .5 with a
remainder of 5 hundredths. The next step is the division of 5 by 11, giving us a 4 with 6 left over, corresponding
to an approximation of .54 with a remainder of 6 thousandths. But that leads us back to the division of 6 by 11,
and so this two step process will now be repeated, over and over. We indicate this by writing

6
11
= 0.5454545454 · · ·

The abbreviated notation for the repeated part of the decimal is to put a line of the part that is repeated. Thus we
can write this as

6
11
= 0.54.

In general, the decimal representation of a number is said to be repeating if it becomes periodic (repeating its
values at regular intervals) and the infinitely-repeated portion is not zero. So, for example, 1/3 has the decimal
expansion 0.33333 · · · = 0.3, and the decimal 72.65431431431431 · · · can be expressed as 72.65431.

Let’s consider 1/7. If we calculate 1 ÷ 7 we obtain the quotients 1,4,2,8,5,7 with corresponding remainders:
3, 2, 6, 4, 5, 1. Notice, each is greater than 0 and less than 7. Since there are only six possible remainders, the next
step of the long division must produce one of these numbers. In fact, it is the first one, 3, so we conclude that
1/7 = 0.142857.

Try this with 26/111. The first step in the long division produces a 0.2 with a remainder of 38, the second step
gives 0.23 with a remainder of 44, and the third step a 0.234 with a remainder of 26. Since we started out with
26 ÷ 111, this is our first repeater, and so the decimal expansion of 26/111 is 0.234.
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Section 1.3: Solve Percent Problems Including Discounts, Interest, Taxes,

Tips, and Percent Increase or Decrease.

Solve real-world and mathematical problems involving the four operations with rational numbers. 7.NS.3

Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any
form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calcu-
late with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers
using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10%
raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to
place a towel bar 9 3

4 inches long in the center of a door that is 27 1
2 inches wide, you will need to place the bar

about 9 inches from each edge; this estimate can be used as a check on the exact computation. 7.EE.3

Another kind of fraction is the percentage. The word percent comes from the Latin phrase, per centium, literally
“of one hundred” and is a contraction in English of the French pour cent. Long before decimals were used, the
need to work with tenths and hundredths was evident. For example, in ancient Rome, the Emperor Augustus
levied a tax on good sold at auction of 1 coin for every hundred coins of the transaction (and a tax of 4 coins per
hundred for slaves). Since “per hundred” in latin is “per cent,” this is literally use of percentages. The percent sign
was developed during the middle ages with the rise of banking, and comes from the shorthand of the Italian per
cento.

The use of “percent” is an intuitive way, given our place value system, of speaking about parts of a whole, and are
used in grades, sports, surveys andinterest rates, just to name a few. For example, if 20% of the 7th grade plans
to purchase Val-o-grams on Valentine’s Day next year, this tells us that 20 out of every 100 7th graders plan to
purchase a Val-o-gram. Hence, 20% is the fraction 1/5, written as a decimal 0.2 or 0.20.

Why use percents when we could use ordinary fractions? By using the denominator 100, it becomes easy to
compare fractional amounts of di↵erent quantities. For example, if the fraction of 7th grade students at Pleasant
Grove Junior High (PGJH) who like chocolate is 300

400 and the fraction of 7th grade students at Oak Canyon Junior
High (OCJH) who like chocolate is 315

450 , we have to do some calculating to tell which Junior High group of 7th
graders has the greater fraction of students who like chocolate. On the other hand, it we are told that 75% of
7th grade students at PGJH like chocolate and 70% of 7th grade students at OCJH like chocolate, then we know
immediately that 7th graders at PGJH have a greater fraction of students who like chocolate. So, percents are a
way of putting fractions over a common denominator, making comparisons easy.

Since percents are alternative representations of fractions and decimals, it is important to be able to convert among
all three forms.

Conversion 1: Percents to Fractions

Using the definition of percent, 25% = 25
100

Conversion 2: Percents to Decimals

To convert a percent directly to a decimal, “drop the % symbol and move the number’s decimal point two places
to the left.” This is because “percent” means “over 100”: 38% means 38/100 which is represented by the decimal
.38.

Conversion 3: Decimals to Percents

Here we merely reverse the shortcut of conversion 2, or we rewrite the decimal as an equivalent fraction. For
example, 0.25 = 25

100 as a fraction with a denominator of 100, given that the “5” is in the hundredths place. We
then utilize the definition of percent and we arrive at 25%. In essence, percents are obtained from the decimals by
“moving the decimal point two places to the right and writing the % symbol on the right side.”
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Conversion 4: Fractions to Percents

Percent is a fraction with a denominator of 100. Thus, we express 25
100 = 25%, or 2

5 =
2·20
5·20 =

40
100 = 40%, and

3
25 =

3·4
25·4 =

12
100 = 12%.

Conversion 4: Fractions to Decimals

This conversion was discussed in the preceding section.

Example 8.

If a quantity grows, then the increase in the quantity, determined as a percent of the original, is the
percent increase. If the number of students at Lincoln Middle School that participated in the Science
Fair in 2011 was 200, but by 2012 had increased to 250 students, what is the percent increase in the
number of students participating in the Science Fair?

Solution. There were 50 more students who participated in 2012, that is, 50 represents 25% of the
original 200 students; therefore, the percent increase was 25% as illustrated in the model.

200

50 50 50 50

50 50 50 50 50

250

Additionally, the fraction change was an increase by 1
4 , the percent change was an increase by 25%,

the 2012 fractional portion of the original would be represented as they have their 2011 students and
lastly, the percent of the original would be represented as 125% of their 2011 students. Furthermore, the
fraction change expression, and percent change expression would be illustrated as:

Fraction Change Expression Percent Change Expression

200(1) + 200
⇣

1
4

⌘
200(1) + 200(.25)

= 200
⇣

5
4

⌘
= 200(1.25)

= 250 = 250

Example 9.

If a quantity shrinks, then the decrease in the quantity, determined as a percent of the original, is the
percent decrease. If the number of Grade 7 students at Lincoln Middle School that had land-line phones
in 2011 was 125, but by 2012 had decreased to 100 land-line phones, what is the percent decrease in the
number of land-line phones?

Solution. There were 25 fewer land-line phones in 2012, that is, 25 represents 20% of the original
125 land-line phones. Therefore, the percent decrease was 20%, as illustrated in the model:

125

25 25 25 25 25

25 25 25 25

100
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Additionally the fraction change was a decrease by 1
5 , the percent change was a decrease by 20%, the

fractional portion of the original would be represented as there are 4/5 the number of land-line phones
as in 2011, and lastly, the percent of the original would be represented as 80% of their 2011 students.
Furthermore, the fraction change expression, and percent change expression would be illustrated as;

Fraction Change Expression Percent Change Expression

125(1) � 125
⇣

1
5

⌘
125(1) � 125(.20)

= 125
⇣

4
5

⌘
= 125(.80)

= 100 = 100

Example 10.

Can percentage increase can be “reversed” by the same percentage decrease? Start with 100 and do a
10% increase. Follow this by a 10% decrease. Are you back at 100? Explain.

Solution. 10% increase from the original 100 is an increase of 10, which equals 110. But a 10%
reduction from 110 is a reduction of 11 (10% of 110 is 11), which means we ended up at 99 (not the 100
we started with). What happened? The 10% took us up 10, then 10% took us down 11, that is, the 10%
increase was applied to 100, but the 10% decrease was applied to 110 as illustrated below.

100 10

110
11
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