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Chapter 7: Probability and Statistics (3 weeks) 
 

UTAH CORE Standards 

Probability and Statistics: 
 

Use random sampling to draw inferences about a population.  

1. Understand that statistics can be used to gain information about a population by examining a sample of 

the population; generalizations about a population from a sample are valid only if the sample is 

representative of that population. Understand that random sampling tends to produce representative 

samples and support valid inferences.7.SP.1 

2. Use data from a random sample to draw inferences about a population with an unknown characteristic of 

interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in 

estimates or predictions. For example, estimate the mean word length in a book by randomly sampling 

words from the book; predict the winner of a school election based on randomly sampled survey data. 

Gauge how far off the estimate or prediction might be. 7.SP.2 

Draw informal comparative inferences about two populations.  

3. Informally assess the degree of visual overlap of two numerical data distributions with similar 

variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of 

variability. For example, the mean height of players on the basketball team is 10 cm greater than the 

mean height of players on the soccer team, about twice the variability (mean absolute deviation) on 

either team; on a dot plot, the separation between the two distributions of heights is noticeable. 7.SP.3 

4. Use measures of center and measures of variability for numerical data from random samples to draw 

informal comparative inferences about two populations. For example, decide whether the words in a 

chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-

grade science book. 7.SP.4 

Investigate chance processes and develop, use, and evaluate probability models.  

5. Understand that the probability of a chance event is a number between 0 and 1 that expresses the 

likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 

indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, 

and a probability near 1 indicates a likely event. 7.SP.5  

6. Approximate the probability of a chance event by collecting data on the chance process that produces it 

and observing its long-run relative frequency, and predict the approximate relative frequency given the 

probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled 

roughly 200 times, but probably not exactly 200 times. 7.SP.6  

7. Develop a probability model and use it to find probabilities of events. Compare probabilities from a 

model to observed frequencies; if the agreement is not good, explain possible sources of the 

discrepancy. 7.SP.7 

a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the 

model to determine probabilities of events. For example, if a student is selected at random from a 

class, find the probability that Jane will be selected and the probability that a girl will be selected. 

7.SP.7a 
b. Develop a probability model (which may not be uniform) by observing frequencies in data generated 

from a chance process. For example, find the approximate probability that a spinning penny will 

land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning 

penny appear to be equally likely based on the observed frequencies? 7.SP.7b 

8. Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. 

7.SP.8 
a. Understand that, just as with simple events, the probability of a compound event is the fraction of 

outcomes in the sample space for which the compound event occurs. 7.SP.8a  
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b. Represent sample spaces for compound events using methods such as organized lists, tables and tree 

diagrams. For an event described in everyday language (e.g., “rolling double sixes”), identify the 

outcomes in the sample space which compose the event. 7.SP.8b  

c. Design and use a simulation to generate frequencies for compound events. For example, use random 

digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A 

blood, what is the probability that it will take at least 4 donors to find one with type A blood? 

7.SP.8c 

 

Chapter 7 Summary: 
Throughout this chapter students engage in a variety of activities: gathering data, creating plots, and 

making comparisons between data sets.  Activities are designed to help students move from experiences to 

general speculations about probability and number.  

Section 1 begins with an exploration of basic probability and notation, using objects such as number 

cube (dice) and cards. Students will develop modeling strategies to make sense of different contexts and then 

move to generalizations. In order to perform the necessary probability calculations, students work with fraction 

and decimal equivalents.  These exercises should strengthen students’ abilities with rational number operations. 

Some probabilities aren’t known, but can be estimated by repeating a trial many times, thus estimating the 

probability from a large number of trials. This is known as the Law of Large Numbers, and will be explored by 

tossing a Hershey’s Kiss many times and calculating the proportion of times the Kiss lands on its base.    

Section 2 investigates the basics of gathering samples randomly in order to learn about characteristics of 

populations, in other words, the basics of inferential statistics. Typically, population values are not knowable 

because most populations are too large or difficult to measure. “Inferential statistics” means that samples from 

the population are collected, and then analyzed in order to make judgments about the population. The key to 

obtaining samples that represent the population is to select samples randomly. Students will gather samples 

from real and pretend populations, plot the data, perform calculations on the sample results, and then use the 

information from the samples to make decisions about characteristics of the population.   

Section 3 uses inferential statistics to compare two or more populations.  In this section, students use 

data from existing samples and also gather their own data.  They compare plots from the different populations, 

and then make comparisons of center and spread of the populations, through both calculations and visual 

comparisons. 

 

Terms and phrases used in this chapter are informally explained below. 

 

VOCABULARY:  
random sample – a set of data that is chosen in such a way that each member of the population has an equal 

probability of being selected  

population – the set of possibilities for which data can be selected 

independent events – events that are not affected by each other 

compound events – an event made up of two or more independent events 

expected value –  the average value of repeated observations in a replicated experiment 

frequency  – the number of times that a particular value occurs in an observation  

probability – the chance or likelihood that an event will occur, expressed from a scale from 0 (impossible) 

to 1 (certain)  

relative frequency –  the ratio of the frequency of an event in an experiment to the total frequency 

Law of Large Numbers – the long run relative frequency of an experiment, based on a large number of 

trials 

sample – a subset of a population collected by a defined procedure for the purpose of making inferences 

from the sample to the population 

simulation – an experiment that models a real-life situation  
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probability model – a mathematical representation of a random phenomenon that includes listing the 

sample space and the probability of each element in the sample space 

uniform probability model – when all of the outcomes of a probability model are equally likely 

 

CONNECTIONS TO CONTENT:   
Prior Knowledge 

Students should be familiar with the following content from 6th grade: 

 Understands that a set of data has a distribution that can be described by its center, spread, and overall 

shape.  6.SP.2 

 Displays numerical data in plots on a number line, dot plots, histograms, and box plots. 6.SP.4 

 Gives quantitative measures of center (median and/or mean) and variability (IQR and/or mean absolute 

deviation) 6.SP.5c 

 Describes any overall patterns of data and any striking deviations from the overall pattern. 6.SP.5c 

 Relates the choice of measure of center and variability to the shape of the data distribution and context. 

6.SP.5d 
 

Chapter 7 begins by reviewing standard 7.SP.5, basic probability content that was covered in Chapter 1.  

 

Future Knowledge 

This unit introduces the importance of fairness in random sampling, and of using samples to draw inferences 

about populations. Some of the statistical tools used in 6th grade will be practiced and expanded upon as 

students continue to work with measures of center and spread to make comparisons between populations.  

Students will investigate chance processes as they develop, use, and evaluate probability models. Compound 

events will be explored through simulation, and by multiple representations such as tables, lists, and tree 

diagrams.    

 

The eighth grade statistical curriculum will focus on scatter plots and bivariate measurement data. Bivariate data 

is also explored in Secondary Math I, however, Secondary Math I, II, & III statistics standards return to 

exploration of center and spread, random probability calculations, sampling and inference. 
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MATHEMATICAL PRACTICE STANDARDS (emphasized):   

 

 

Make sense of 

problems and 

persevere  

in solving them. 

Students will make sense of probability calculations by connecting rational 

numbers to probabilities, and creating models to support calculations.  

Additionally, students will use sense-making skills to compare data sets 

using measures of center and spread.   

 

Reason 

abstractly and  

quantitatively 

 

Students are able to utilize the mathematics necessary to solve simple 

probability problems using both ratios and percents, and interpret data using 

appropriate measures of center and spread.   

 

Construct viable 

arguments and 

critique the 

reasoning of 

others 

Students are able to assess the reasonableness of their answers and will 

solve problems in a variety of ways, where they will be able to discuss and 

validate their own approaches and solutions.  

 

Model with 

mathematics 

Students will use multiple representations to model probability problems  

and create appropriate graphical representations for data.  

 

Attend to 

precision  

 

Students will identify whether or not their answer makes sense (e.g. 

probability values less than 0 or greater than 1 are not valid, measures of 

center and spread should be reasonable for the data). 

 

Look for and 

make use of 

structure 

Students are able to recognize the key phrases of compound probability 

models and use of diagrams or tables to assist with calculations and data 

analysis.  

 

Use appropriate 

tools 

strategically 

 

 

Students demonstrate their ability to select and use the most appropriate 

tool(s), such as diagrams, tables, lists, box plots, dot plots, etc., while 

solving real-life word problems.   

 

Look for and 

express 

regularity in 

repeated 

reasoning 

Students look for structure and patterns in real-life word problems, which 

will help them identify a solution strategy.   
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7.0 Anchor Problem: The Teacher Always Wins 

 

The Teacher Always Wins Game (to be introduced by the teacher) 

 

Why does the teacher always seem to win?  Is it certain that the teacher will win?  After the introduction of this 

activity, your job is to determine the answers to these questions, and see if you can discover the secret to the 

game. 
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Section 7.1: Probability Models to Analyze Real Data, Make 

Predictions 

 
Section Overview:   
 

This section starts with a review of concepts from Chapter 1 section 1 and then extends to a more thorough look 

at probability models. A complete probability model includes a sample space that lists all possible outcomes, 

including the probability of each outcome. The sum of the probabilities from the model is always 1. A uniform 

probability model will have relative frequency probabilities that are equivalent. A probability model of a chance 

event (which may or may not be uniform) can be approximated through the collection of data and observing the 

long-run relative frequencies to approximate the theoretical probabilities. Probability models can be used for 

predictions and determining likely or unlikely events.  

 

There are multiple representations of how probability models can be displayed. These include, but are not 

limited to: organized lists (including a list that uses set notation), tables, and tree diagrams. 

 

Students will also consider the ramifications of rounding, what it means to have “independent events,” how to 

create a simulation, and further explore the difference between theoretical probability and real life situations. 

There will be several exploration activities in the section giving students ample opportunity to discuss ideas. 

 

Concepts and Skills to be Mastered  

1. Develop a probability model and use it to find probabilities of events.   

2. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain 

possible sources of the discrepancy.  

3. Understand that, just as with simple events, the probability of a compound event is the fraction of 

outcomes in the sample space for which the compound event occurs. 

4. Represent sample spaces for compound events using methods such as organized lists, tables, and tree 

diagrams. 
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7.1a Class Activity: The Horse Race Game Revisited—Probability Basics  

Note: You may wish to use ratio, decimal or percents to discuss probability and compute predictions. If 

you did not do 1.1.b, you should do it BEFORE this activity. Review with students the difference 

between saying “there is a 1 in 3 chance of drawing a red marble from this bag of red and blue marbles” 

and “there is 1 red marble for every 3 blue marbles in the bag.”  

 

1. Review from Chapter 1 (1.1.b): in the Horse Race Game you predicted which horse (#2-12) would win the 

race.  The winning horse was determined by tossing two dice and observing the sum of the die.   Fill in the 

table below to find the possible sums of two dice.    

 

 

Use the table to answer the following questions.  Some of the questions may review Chapter 1 content.  

 

2. What is the number of the horse that is most likely to win? Explain how you know.   

Horse #7  Seven is the sum that occurs most often.  

 

 

3. How many times did that horse’s number occur in the table?    6 times 

 

4. What is the number of the horse (or horses) that is/are the least likely to win? Both horses #2 and #12 

Remind students why there is no “1 horse.” 

5. How many times did that horse(s) number occur in the table?  ________1 each 

 

6. How many total outcomes are there altogether on the table?  _________ 36 outcomes 

 

RECALL: Probability is written as a part-to-whole ratio of possible outcomes to the number of total 

outcomes.  For example, the chances that horse #3 will win is: two possible ways to win out of thirty-six 

total possibilities (or 2/36.)    

 

 

7.  What is the probability that horse #8 will win?  _________ 5/36 

 

 

 

 

 

 

 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

In general, the “#7 horse” wins. 

There is a 1/6 probability of 

rolling a sum of 7 while all other 

rolls (sums) have probabilities less 

than 1/6. See 1.1b for more 

information. 

Note that the word “probability” is 

used here. Talk about other words 

such as “chance” that are sometimes 

used instead.  The word “odds” is 

NOT correct. Odds and probability 

are related but distinct numeric 

representations of situations. 
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The table shows the probabilities for each horse winning.  Recall, this is called the theoretical probability of 

winning.  Remind students that we didn’t actually race the horses, but we can estimate the probabilities that 

each one might win using the theoretical probability.  

Mathematical Notation:  the mathematical shorthand way of writing a probability looks like this: 

P(horse #4 wins) = 3/36 OR P(4) = 3/36 (we can also write this as a reduced fraction, decimal or percent.) 

 

8. Fill in the table below with the theoretical probability for each horse to win.  Write the values both as a 

fraction and as a percent.  Round the percents to the nearest whole number.  

 

Number 2 3 4 5 6 7 8 9 10 11 12 

Probability 

as a fraction 

1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 

Probability 

as a percent 

3% 6% 8% 11% 14% 17% 14% 11% 8% 6% 3% 

This is a good opportunity to review fractions. Note that it is perfectly acceptable in probability calculations to leave the fraction 

in the original form because it provides information about the size of the original sample and the number of outcomes of each 

type.  

9. Add up all the fractions.  What is the total?   The total is 1.   
Vocabulary:  explicitly discuss that the table showing the outcomes (horses #2-12) along with probabilities that add to 1 represent  

a Probability Model. The table shown above is one representation of a probability model.  Other representations include ordered 

lists and tree diagrams. The sum of all probabilities in a probability model will be 1, or if in percents, 100%.  If the values don’t 

add to 1 (or 100%), then you’re missing something and/or there is some problem with the way you’re calculating.  

10. Add up all of the percents in the table.  What is the total? 101%. Let the students think about this.  Discuss why 

the sum is not 100%. Discuss how rounding error occurs.   

 

11. If there are 200 races (200 rolls of the dice), how often would you predict horse #7 would win? Show all 

your work and explain your reasoning. 

(200)(6/36) = 1200/36 or 100/3 or 33. 3̅ races (not a whole number), or using rounded percents: (200)(0.17) = 34 

races (a whole number).   

12. Suppose the horses race…  

a. …500 times, what is your prediction for how many times horse #7 will win?  Show your calculations.  
(500)(6/36) = 83.33,  or using the less accurate rounded percents:  (500)(0.17) = 85.   
 

 

b. …1000 times, what is your prediction for how many times horse #2 will win? …horse #12 will win?  

Each will equal (1000)(1/36) = 27. 7̅, or about 28 times. 

 

c.  Suppose we watched the horses race 500 times. Which of the following values would be the most likely 

result for horse #5?     11 wins  50 wins*   100 wins  250 wins  

 

Explain the reasoning for your choice.   50 is the closest to the value you would expect.  Students should 

attend to the fact that winning/losing do not have equal probability. It may be useful to ask students:  Why 

isn’t the answer 250? Horse #5 can only either win or lose, so isn’t that a 50% chance of winning?  Pin down 

that winning and losing are not equally likely outcomes. In other words, even though there are only two 

outcomes possible, winning has a 4/36 chance while losing has a 32/36 chance.  
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7.1a Homework: Probability Problem Solving 

 
M&M Probability (refer to the table below for amounts of colors) 

 

1. The color mix in a large bag of M&Ms is shown in the table below.  What is the total number of M&M’s in 

the bag?   The total number of M&Ms = 220  

 

 

2. Calculate the probability of drawing each of the colors.   Finish the probability model by recording the 

experimental probability of drawing each color.   Show the probabilities as both a fraction and as a percent. 

  

Color and 

number 

RED 

60 

GREEN 

40 

BROWN 

 45 

YELLOW 

25 

ORANGE 

20 

BLUE 

30 

Fractions 

 

 

 

60/220 

= 3/11 
     

Percents 

 

 

 

27%      

 

 

 

3. If you drew 50 M&M’s, one at a time (returning the M&M to the bag each time), how many of each color 

would you expect, based on the probabilities in the table above?   Put your answers in the table.  

Predicted Sampling Estimate for 50 draws 

RED GREEN BROWN YELLOW ORANGE BLUE 

13.64 ≈ 14      

Remind students that the predicted numbers should add up to 50 and why this may not be the case when 

rounding.   

 

4. Suppose you went to the store and bought a large bag of M&Ms. From that bag you took a sample of 

exactly 50 M&Ms and calculated the percent of each color in your sample. Do you think the percents would 

be the same as in the first table? Why or why not?  

 

 

 

 

 

 

 

 

 

 Probability model – a mathematical representation of a random phenomenon that includes 

listing the sample space and the probability of each element in the sample space. 
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5. The Bag Game 

 

There are three bags of chips: one with 25 red and 5 blue, another with 20 red and 10 blue, and the last with 

10 red and 20 blue. You’re randomly given one bag. To win the game, you must guess correctly which bag 

you’ve been given but you cannot see its contents.  

    

To make your guess you are given three options:  

       

a. Draw 5 chips and guess correctly, win $100. 

b. Draw 10 chips and guess correctly, win $75. 

c. Draw 15 chips and guess correctly, win $50. 

d. Draw 20 chips and guess correctly, win $25. 

e. Draw 25 chips and guess correctly, win $10. 

 

Note: to plat the bag game, you draw one chip at a time, record the color, replace the chip, and then repeat.  

 

You want to win as much money as possible. Which option do you choose for guessing which bag you’ve 

been given? Why? Be certain to explain all of the probabilities.  Discuss with students that there is not a 

“right” answer. What matters is soundness of the argument. You might want to talk about insurance rates, 

sports, or other areas where probabilities are considered to make decisions. 

 

 

6. Rolling Doubles  

 

If TWO dice are rolled 36 times, how many doubles would you expect to see?  What is the probability of 

rolling doubles with two fair die?  Students may construct a table similar to the one at the beginning of the 

activity. Instead of listing each sum, list the dice combinations like (1,6), (2,6) etc.  

 

Spiral Review 
 

1. Write 0.612 as a percent and fraction.      61.2 %  612/1000 or 153/250 

 

2. If 4 gallons of gas cost $14.60, how much does 10 gallons of gas cost?     $36.50 

 

3. If you spin the following spinner once, what is the theoretical probability of spinning an L? 

 
 

4. A mouse can travel 1.5 miles in ¾ of an hour. At that pace, 

a) how far can it travel in 1 hour? 2 miles 

b) how long does it take it to travel one mile? ½ an hour 

 

Madison is riding her horse around the outside of a circular arena. She knows that 14 laps is ½ mile. What is 

the diameter of the arena? (Hint: 1 mi = 5280 ft) 
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7.1b Class Activity: Probability Models  

Probability models (like “tree” models) show the outcome of random processes. A probability model includes 

the following: 

 A listing of the sample space (all the possible outcomes.)  For example, you might use set notation         

S = { _ , _ , _ , …}, a tree diagram, a table, etc. 

 Probability for each possible event in the sample space. Remember, probabilities always add up to 1.  

Talk again to students about notation: set notation for a sample space appears as: S = {a, b, c,…}.  The “S” 

stands for “sample space”.  The curly brackets enclose the possible outcomes.  Each possible outcome is 

usually only listed once, even if it occurs more than once.   

1. Suppose you are going to toss a coin and see how it lands. 

a. List the sample space using set notation. S =  {H, T}    

                                          

b. What is the probability for tossing a head? P(head) =    0.5 or 1/2 

 

c. What is the probability for tossing a tail? P(tail) =  0.5 or 1/2   

 

 

Ask students: what if you were to toss a thumb tack, what are the possible outcomes? You might also (or 

instead) ask: what if you were to toss a Kleenex box, what are the possible outcomes for how the box will 

land? 

Follow up either situation by asking if all outcomes are equally likely. The answer is NO. For the thumb 

tack, it might land up (on the back of the tack), sideways, or on the tip of the tack, but these are not equally 

likely. Likewise with the Kleenex box. Though there are 6 sides of the box, students will note that it is more 

likely that the box will fall on to one of the sides with the greatest surface area.  

 

 

2. Consider the theoretical outcomes for tossing a fair coin 3 times.   

a. What is the sample space? Use set notation. (Hint: there should be 8 outcomes in the sample space.)  

{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}    

 

 

 

 

 

 

 

b. What is the probability of each of the 8 outcomes? 1/8.  Discuss: Since heads and tails are equally likely, 

each of the eight outcomes in the sample space are equally likely.  

 

 

 

 

A probability model for which all outcomes are equally likely (have the same probability) is 

called a uniform probability model.    
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3. Create a tree diagram to display the sample space for tossing a coin 3 times.  The first branch should have 

two forks, one for H and one for T.  Each of those has two forks (now 4 outcomes), and each of those have 

two forks (now 8 outcomes).   

 1st 

Toss 

2nd 

Toss 

3rd 

Toss 
Outcomes Probability 

 

   H  
H H H H (1/2)(1/2)(1/2)=1/8 

  H      T H H T (1/2)(1/2)(1/2)=1/8 

    T H H T H (1/2)(1/2)(1/2)=1/8 

 
 

T H T T (1/2)(1/2)(1/2)=1/8 

 
  H 

H T H H (1/2)(1/2)(1/2)=1/8 

  T T T H T (1/2)(1/2)(1/2)=1/8 

 
  T 

H T T H (1/2)(1/2)(1/2)=1/8 

  T T T T (1/2)(1/2)(1/2)=1/8 

     Total:  1 

 
A tree diagram also helps organize information so that students can list all of the outcomes without missing any of them. 

Notice that a tree diagram is also handy for calculating probabilities.  Since this is a uniform distribution, the chance of being on 

either fork is equally likely at 1/2.  Therefore, the probability of HHH, or P(HHH), is (1/2)  (1/2)  (1/2) = 1/8. 

 

 

4. Use the list or the tree diagram for 3 coin tosses to fill in the theoretical probability of the following events: 

 

 3 heads  3 tails 2 heads and 1 tail 

(in any order) 

  2 tails and 1 head  

(in any order) 

    1/8 or 0.125    1/8 or 0.125   3/8 or 0.375    3/8 or 0.375 

                            Ask the students to search for “2 heads and 1 tail (in any order)” on the tree diagram.   

 

Ask students if they think the table shown above represent a complete probability model?  How do they know? 

All possible outcomes are shown along with the probabilities, and the probabilities add up to 1.  

 

5. Use all or part of the tree diagram in #4 to calculate the following probabilities: 

Notation:  if you see P(TTH), that is the same as writing “the probability of a tail, and a tail, and a head” 

 

 

P(H) = 0.5  or 1/2    P(T) = 0.5  or 1/2  

 

P(HT) = (0.5)(0.5) = 0.25 or 1/4  P(TH) =  (0.5)(0.5) = 0.25 or 1/4   

 

P(HTH) =  (0.5)(0.5)(0.5) = 0.125 or 1/8 P(TTT) =  (0.5)(0.5)(0.5) = 0.125 or 1/8    

 

 

 

 

Compound Event: an event made up of two or more independent events. 
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6. Fill in the blanks for calculating probabilities for compound events, in other words, for two or more events 

occurring together.   

      Suppose we call the first event A, the second event B, the third event C, etc.  

 

If P(A) = 0.5 and P(B) = 0.5 

then the compound probability P(A and B) = _________ (0.5)(0.5) = 0.25 

 

If P(A) = 0.5 and P(B) = 0.5 and P(C) = 0.5 

then the compound probability  P(A and B and C) = ______________ (0.5)(0.5)(0.5) = 0.125 

 

Using words and symbols, state your conjecture for the general rule for calculating probabilities for 

independent compound events.  In our activity above we wrote P(HTH) as shorthand for P(head the tail the head).  To 

make a general rule, we will use A, B, and C.  Thus, a general rule might look like: P(A and B and C) = P(A)P(B)P(C)  Note 

again, that this rule is only true for independent events.  It is another lesson entirely to consider compound events that are not 

independent.  This topic is addressed in Secondary Math Vocabulary:  Independent – the outcome of one event has no effect on 

the next event.  Ask students to describe how the rule for independent compound probabilities relates to the tree diagram.  One 

possible answer:  you can find the probability of the end result (such as following the branches leading to HTH) by multiplying 

the probabilities along each branch.  Also discuss explicitly that P(HTH) is different than P(THH) or P(HHT), but that each has 

the same value. If we want to find the probability of flipping two heads and one tail in three flips, any order, then we find all the 

ways this is possible (THH, HTH or HHT) and sum each of the three ways it can be achieved: 0.125 + 0.125 + 0.125 or 0.375. 
 

 

7. Use the rule you found in the prior question to calculate P(HTHHH). (0.5)(0.5)(0.5)(0.5)(0.5) = 0.03125 = 

1/32. Again emphasize that you are asking for heads and tails in a specific order in five flips. 

 

 

8. Suppose that you have an unfair coin where the P(H) = 0.8 and the P(T) = 0.2.  Compute the following 

probabilities:      

P(H) = 0.8     P(T) = 0.2 

 

P(HT) = (0.8)(0.2) = 0.16   P(TH) =  (0.2)(0.8) = 0.16 

 

P(HTH) =  (0.8)(0.2)(0.8) = 0.128  P(TTT) = (0.2)(0.2)(0.2) = 0.008 

 

Note:  This is not a uniform distribution because the outcomes are not equally likely.  
 

9. Compare the calculations that you used for the fair coin and the unfair coin.  How are the calculations 

similar?  How are they different? You use the same method of multiplying the probabilities together, but 

you change the probabilities to P(H) = 0.8 and P(T) = 0.2 

 

 

 

Talk with students about how they might continue to use the tree diagram to calculate compound 

probabilities for an unfair coin. Help them understand that the tree diagram is still useful, you just have to 

change the probabilities.  The outcomes are no longer equally likely.  
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7.1b Homework: Probability Models   

 

Suppose you rolled a dice and tossed a coin at the same time. 

1. Create a probability model, BOTH a tree model and table, for rolling a die once then tossing a coin once.   

 

 

 

 

 

 

 

 

 

 

 

 

 

2. How many total outcomes are represented by either the tree or table model ?  6  2 = 12 

 

3. What is the sample space for the possible outcomes?  List the sample space using set notation.   

 S = { __ , __ , ___ …} S = {1H, 1T, 2H, 2T, 3H, 3T, 4H, 4T, 5H, 5T, 6H, 6T}.  Can be in any order, and 

can be described using words rather than numerals and letters. 

 

4. What is the probability for each outcome in the sample space?  Write the probabilities both as a ratio and as 

a percent.  

 

 

5. If you collected experimental data from rolling a die and then tossing a coin, would the calculated 

probabilities from the experiment match the theoretical probabilities? Why or why not?  
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Spiral Review 
 

1. Rewrite the following part:part ratio as part:whole ratio. 

a. The ratio of boys to girls in Gabrielle’s family is 3:8.     3:11 

 

 

 

2. Solve the following proportion equation:          
𝑥

5
=

4

10
         x = 2 

 

 

 

3. Simplify each. 

a)  6(5)     30 b)  10  31        -310 

 

 

 

4. Kim had a bag with red, green, purple, yellow and orange marbles. The following table shows what 

color she drew each time.  

 

 

 

 

a) Find the experimental probability of drawing a red marble. 1
5

  

 

 

b) If there are 100 marbles in the bag, how many of them do you think are red? Justify your answer. 

20 

 

5. If ∠N is vertical to ∠𝑀, and 𝑚∠𝑀 = 98° and 𝑚∠𝑁 = (6𝑥 + 2)°, the x must be _______________. 

  

Draw 1 2 3 4 5 6 7 8 9 10 

Result red orange purple orange orange purple yellow green red green 
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7.1c Class Activity:  Rolling Along       
 

Can you roll your tongue?  Some people can roll their tongue, some cannot.  

Approximately 1 out of every 3 people cannot roll their tongue.   
Depending on the source,  the estimated proportion of people in the population who cannot roll their 

tongues is between 19-35%. 

Consider: Ria is doing a survey on the number of people with different genetic traits.  She asks people, one at a 

time, if they can roll their tongue.  Ria was surprised that she asked 5 people before she found someone who 

wasn’t able to roll their tongue. Does this mean the statement “approximately 1 out of 3 people cannot roll 

their tongue” must be false? Is it unusual that after surveying 5 people she did not 

find anyone who could not roll their tongue?  
 

To answer this question we can do a simulation of Ria’s experiment.  
 

 

 

 

 

Select a method to simulate a 1 out of 3 chance (die, slips of paper, software, etc.). Run the simulation until you 

get the “1 out of 3” chance you’re looking for. For example, there is a 1 out of 3 chance of rolling a 1 or 2 with 

a six sided die. One simulation is the number of times it takes to roll a 1 or 2 with a die. Record a tally mark 

under the number of times it takes to get the 1 or 2 in the table below. Run the simulation 20 times recording 

your result each time. Once you’ve done your 20 simulations, compile your results with two other people so that 

you have 60 total simulations. Record the data in the table.   
 

 

 

Number of 

attempts  

1 2 3 4 5 6 7 8 9 10 

Record a tally  

 

7 4 3 2 1.3 0.9 0.6 0.4 0.3 0.2 

Combined 

Results 
(60 simulations) 

20 13 9 6 4 3 2 1 0.8 0.5 

% out of 60 

simulations 

20/60 

33.33% 

13/60 

22.67

% 

9/60 

15% 

6/60 

10% 

4/60 

6.67% 

3/60 

5% 

2/60 

3.33% 

1/60 

1.67% 

0.8/60 

1.33% 

0.5/60 

0.83

% 

 

1) Based on the combined trials, calculate the probability that it would take 5 or more attempts.      
Theoretically, P(5 or more attempts) = 0.1975.  When students combine their results to obtain 60 total trials, they should get a 

value of around 11 where it took 5 or more attempts to get a success, although student results will vary.  As an example, this table 

shows expected values for up to 10 attempts.  Summing the values found in the table for 5 or more attempts: 4 + 3 + 2 + 1 + 0.8 + 

0.5 = 11.3.  Thus students would expect around 11 of the 60 trials to take five or more attempts. 

2) Were Ria’s results unusual?  Write a paragraph summarizing your conclusion, based on the simulation. No, 

Ria’s results are not terribly unusual.  The simulation shows that results like this could happen in slightly 2-3 times out of 20, and 

about 11 times out of the combined 60 attempts.  A discussion of the variability of the students’ results is an important concept in 

statistics, and in simulation.  
 

 

 

 

 

 

Simulation – an experiment that models a real-life situation  
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3) Suppose the ratio of left handed people to right handed people is 1:10.  Create a simulation for the number 

of trials if takes to get a left handed person.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4) Suppose that 60% of students choose chocolate ice cream, 30% choose vanilla ice cream, and 10% choose 

strawberry ice cream.  Create a simulation for the number of trials it takes to get a student to choose 

chocolate, vanilla and strawberry ice cream. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Law of Large Numbers – the long run relative frequency of an experiment, based on a large number of trials. 
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7.1c Homework:  Finding Probability   

The colors of M&Ms in a large bag are distributed according to the probabilities shown in the table:     

 

Color Brown Red Yellow Green Orange Blue 

Probability 0.25 0.25 0.20 0.10 0.10 

 

? 

 

 

1. Finish the table above by finding P(blue).   

 

2. Suppose you draw an M&M out of the bag and record the color.  List the sample space using set notation.  

S =  

 

3. What is required in order to have a complete probability model?   

All of the possible outcomes listed, and probability of each outcome, and the probabilities adding up to 1.    

 

 

 

Compound Probabilities of M&M Colors 

4. Compute the following theoretical probabilities.  Use the probabilities from the M&M table given above.    

 

P(red and yellow) = (0.2)(0.2) = 0.04     

 

P(brown, orange) =  

 

P(3 blues in a row) =  

 

 

 

Simulation 
5. Your favorite M&M’s are red, so you want to create a simulation for modeling the drawing of red M&M’s 

from a bag with the color probabilities as listed above. Describe a simulation.  Remember: you are only 

trying to simulate drawing a red M&M.  

Hint: From the table above, P(red) = 0.25.  Theoretically in four tries, one will be red. 
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Spiral Review 
 

1. If you flip a penny three times, what is the probability of getting two tails and one head in any order? 

 

2. The scale factor  to  is 
1

6
. If  is 30, what is the length of ? 

 

3. Daniel got 4 out of every 5 questions correct on a recent multiple choice test. If he got 64 questions 

correct, how many did he miss?      80 - 64 = 16   Daniel missed 16 questions. 

 

 

4. Find the sum or difference for each:                     

a.                                        b.         

 

 

5. Paul left a $25 tip for the waiter at a restaurant.  If the tip was 25% of the bill, how much was the bill? 

$100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DGEL DHOP OP EL

5 3

3 4


11

12

2 1

3 4
 

5

12

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7.1d Class Activity: More Models and Probability   

 

 
Win the Spin! 
Determine the probability that Player 1 wins the spin (highest number wins).  Player 1 uses spinner A and 

Player 2 uses spinner B.  Assume that the areas on each spinner are equal in size.  

 

1. Create a probability model for the outcomes of the “Win the Spin” game, using a tree diagram.  Students  

  Spin 

1 

Spin  

2 Outcomes Probability 

     3 1, 3 (1/3)(1/3) = 1/9 

   1     4 1, 4 (1/3)(1/3) = 1/9 

     8 1, 8 (1/3)(1/3) = 1/9 

     3 5, 3 (1/3)(1/3) = 1/9 

   5   4 5, 4 (1/3)(1/3) = 1/9 

     8 5, 8 (1/3)(1/3) = 1/9 

     3 9, 3 (1/3)(1/3) = 1/9 

   9   4 9, 4 (1/3)(1/3) = 1/9 

     8 9, 8 (1/3)(1/3) = 1/9 

     Total: 1 

 

2. How many possible outcomes are there? How do you know? 3 • 3 = 9 outcomes or students could count the 

outcomes from the tree diagram.   

 

3. What is the probability of each of the outcomes?  How do you know?  1/9.  A possible answer: the 

probabilities are equal because the areas of each outcome on the spinner are equal at 1/3.  Since the game 

requires each of the two spinners to be used once, then each of the outcomes from the two spins have a 

probability of (1/3)(1/3) = 1/9.  

 

4. What is the probability that Player 1 will win? How do you know?  Player 1 wins 5 times out of the 9 

outcomes, or 5/9.   Refer to the outcomes on the probability model.    

 

5. What is the probability that Player 2 will win? How do you know? Player 2 wins 4/9 times.  

 

 

6. What is the probability of a draw (tie)? How do you know? P(tie) = 0  There are no ties, because the 

spinners have different numbers. Make note that the probability of an impossible event is 0. Probabilities 

have values between 0 and 1.  

 

7. Is this a fair game? Why or why not? No, Player 1 has a higher probability (5/9) of winning.  

 

 

 

Spinner BSpinner A

4
3

85

9
1
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8. If you were to play the game, your outcome would not necessarily match the probabilities above. Explain 

why this is true.  The students will probably mention that there is always variability.   

 

 

 

 

 

Odd or Even Game 

For a different game Player 1 and 2 each spin once (Spinner A, then B) and add the numbers. If the sum is odd, 

then Player 1 gets a point. If the sum is even, then Player 2 gets a point. Review with students: odd number + 

odd number = even number; odd number + even number = odd number; even number + even number = even 

number; and even number + odd number =  odd number.  

 

9. Create a probability model for the outcomes of the “Odd or Even” game, using a tree diagram.    

 

 

 

 

 

 

 

 

 

 

 

 

 

10. Use the tree diagram to figure out if the game is fair or not. Explain.  The game is not fair.  P(even) = 3/9, so 

Player 1 only wins 3 times out of 9.   

 

 

 

 

 

 

11. Use the rule for calculating compound probability to calculate the probabilities of the different combinations 

of the spins for Players 1 and 2.  Show all your work.   

 

 

P(odd, even) = (3/3)(2/3) = 6/9. Verify with the tree diagram.   Player 2 will win these. 

 

P(odd, odd) = (3/3)(1/3) = 3/9.  Verify with the tree diagram.   Player 1 will win these.  

 

P(even, odd) = 0(1/3) = 0.  Verify with the tree diagram.  

 

  P(even, even) =  0(2/3) = 0.  Verify with the tree diagram.  
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7.1d Homework: Probability Models and Spinner Games   

 
1. The spinner at right is spun twice. List the sample space for the possible outcomes 

from two spins.  Use set notation.  (Hint: there are 9 outcomes) 

 

S =  

 

 

 

 

 

2. Are all the outcomes in the sample space equally likely?  Why or why not?   

 

 

 

3. How might you figure out the number of outcomes without making a list or diagram?  Explain. 
The first spin has 3 different outcomes. Each one of those has 3 different outcomes paired with it for the second spin.  

So 3  3 = 9. This may cause confusion for some students. Discuss how the right red and then blue is the same 

outcome as the left red and then the blue. i.e. it is P(red, blue). However, it is different than P(blue, red) and that 

outcome can happen by first spinning a blue and then the red on the right or left. It might help students to think about 

the entire top half of the spinner as red rather than thinking about it as two different areas. 

4. Create a probability model for the outcomes for spinning the spinner twice (organized list, tree diagram, or 

table) to show all possible outcomes and probabilities from two spins of the spinner.  

 

 

 

 

 

 

 

 

 

 

 

5. Fill in the spaces below and make a conjecture about a rule for the number of possible outcomes for 

compound events. 

 

If there are 3 possible outcomes in the first event, and 2 possible outcomes in the second event, then there 

will be _______ possible outcomes in the compound event.  2  3 = 6 

 

If there are 5 possible outcomes in the first event, and 3 possible outcomes in the second event, then there 

will be _______ possible outcomes in the compound event.   

 

If there are “a” possible outcomes in the first event, and “b” possible outcomes in the second event, then 

there will be ________ possible outcomes in the compound event.   

 

 

 

 

red

greenblue

red
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6. Examine the model you created above to determine these probabilities.  

a. P (red, red) = (1/2)(1/2) = 1/4 

 

b. P (one red and one green, in any order)   

 

c. P (blue, red) Note: blue must come first.   

 
 

7. Create a probability game for each spinner.  Design the spinners to make one game fair and the other unfair. 

Write the rules to tell how to play each game. 

 
Game 1 Rules  Game 2 Rules 

 

 

 

 

 

 

 

 

 

   

8. Explain the probability of winning each game and why the game is fair or unfair. 

 

 

Extra Challenge: Spinners for Math Day 

 

Howard is in charge of the Spinner Game for the Math Fair. There will be about 300 people at the fair and he 

believes everyone will buy a ticket to play the Spinner Game. The school wants to raise money for some math 

software. Spinner tickets cost $1. Winners of the spinner game will be given cash prizes. Hal wants to make 

$100 profit from the game.  

 

Design a plan that should net Hal $100 from the Spinner Game. Be sure to show the spinners you would 

recommend and the rules you think would work. Explain why your spinners and rules make sense for this 

context. 

 

 

 

Game 2Game 1
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Spiral Review 
 

1. Simplify each: 

 

a.     6(5)   30   c.  10  31    -310 

 

b. 16(3)   48   d.  89 + (6)     -9 

 
2. Kelsey puts each letter of her name on a piece of paper. What is the probability that she will draw a K 

and an E in any order? 

 

 

 

3. Order the following rational numbers from least to greatest.   
12

3
, −4.5, −

14

3
, −0.94,  

 

−
14

3
, −4.5, −0.94,

12

3
 

 

4. Matthew wants a bigger cage for his bearded dragon. He wants to length to be 2 inches less than twice 

the width. If the perimeter of the cage should be 104 in, what dimensions should the cage be? 

 

 

 

5. Use the diagram at the left to find the angle measures. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x-3 

2x-9 
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Long run relative frequency:  the probability of an outcome obtained after many trials 

Variable (the verb, not the noun): not consistent or having a fixed pattern; liable to change 

Experimental Probability: the ratio of the number favorable outcomes to the total number of trials, 

from an actual sequence of experiments 

Theoretical Probability: the probability that a certain outcome will occur, as determined through 

reasoning or calculation 
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7.1e Class Activity: Probability of a Kiss 

 

When you toss a coin, it will either land heads or tails. That isn’t very interesting.  But 

suppose you toss a Hershey’s Kiss in the air, and then observe how it lands.  That is much 

more interesting. 
 

The sample space for tossing a Kiss has two possible outcomes:  S = {base, side}.  “Base” means the Kiss 

landed on the flat base, and “side” means the Kiss landed on its side.   
 

What is the probability for each outcome? We don’t know the answer.  First we must do an experiment, and 

then calculate the experimental probability that the Kiss will land on its base, P(B).   
 

1. Define “long run relative frequency”. The probability of an outcome obtained after many trials.   

 

2. Make a guess for the probability that a Kiss tossed in the air will land on its base: 

P(B) = Student answers will vary, most students might think the Kiss will land more frequently on the base, but 

actually it will land more frequently on the side.  There is more surface area on the side than the base.  In past 

trials done by students, the probability of landing on the base was always less than 0.5, sometimes about 0.3 
3. Record the results of your experiment in the table after each toss and calculate the experimental 

probability after each trial.  Notice that the probabilities are calculated from:   

 (Base running total)/(trial number). 

4. Make a plot of your results by plotting the trial number against the experimental probability.  Connect 

the points from trial 1, to trial 2, to trial 3,…and end with trial 30.   

Hint: Have students fill in the outcomes column then complete the running total and experimental probability. 

Trial 

Number 
Outcome 
(B or S) 

# of times 

on Base 
(running total) 

Experimental 

Probability 

1    

2    

3    

4    

5    

6    

7    

8    

9    

10    

11    

12    

13    

14    

15    

16    

17    

18    

19    
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20    

21    

22    

23    

24    

25    

26    

27    

28    

29    

30    

 
Ex 1 B 1 1:1 

Ex 2 S 1 1:2 

Ex 3 B 2 2:3 

 

5. What is the experimental probability of a Kiss landing on its base after 30 trials for your experiment? 

P(B) =   
.   

 

6. Compare the value for the experimental probability at Trial 2, compared to Trial 20.  Which value was 

closer to the final experimental value you found at Trial 30?  

 

 

 

 

7. Examine the appearance of the plot.  Why is the plot so variable at the beginning compared to at the 

end?  

 

 

 

 

8. Why is it important to perform many trials in an experiment, and not just a few?  
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Probability of a Kiss:  Graph your results below.  Draw lines between the points when you are finished. 

T
rial N

u
m

b
er 

Experimental Probability 
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7.1e Homework: Experimental Probabilities 

    

1.  Choose an object that has two outcomes when tossed, such as a spoon (face up or face down) or a 

marshmallow (circular base or side.) Use the techniques from the class activity to find the experimental 

probability that the object will land on one of the sides.   

 

Plot the data, using the same graph as you used for the class activity.  However, plot the outcomes for the 

homework using a different color, and then label it.   

Trial 

Number 
Outcome 
(B or S) 

# of times 

on Base 
(running total) 

Experimental 

Probability 

1    

2    

3    

4    

5    

6    

7    

8    

9    

10    

11    

12    

13    

14    

15    

16    

17    

18    

19    

20    

21    

22    

23    

24    

25    

26    

27    

28    

29    

30    
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Graph your results of # 1 below.  Draw lines between the points when you are finished. 

  
Experimental Probability 

T
rial N

u
m

b
er 
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Spiral Review 
 

1. Estimate by rounding to the nearest integer. -3
1

3
¸ -

3

4
» ____¸ ____ » ____    -3 ÷ -1  3 

Is your answer an over estimate or under estimate, explain?    Under estimate 

 

 

2. David is in a submarine at 200 feet below sea level.  Casey is above him in a helicopter at 5,900 feet 

altitude.  How far apart are David and Casey?      5,900 −   (−200) =  6,100𝑓𝑡.  
 

 

3. Find each difference without a model. 

a.    c.  5 – (–3) 

 

b.   d.  –90 – 87  

 

4. Given the measures of the following angles, identify the possible angle relationship(s). 

a. mÐUTS = 9°and mÐDCB = 9° 

 

 

b. mÐBCD = 71°and mÐPSV =109° 

 

 

c. mÐPSV = 60°and mÐGFE = 30° 

 

 

5. A baby toy has rings with a radius of 3 inches. What is the circumference of the rings? 

  

16 - 29

-2 - (-8)
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7.1f Optional Class Activity:  Free Throws or Monty Hall  

 

Activity 1: Free Throws—Will We Win? 

You are the coach in the final state basketball championship game; your team is losing by one point. The other 

team has the ball. You have one of your players foul the person with the ball from the other team. The player 

from the other team will now shoot two free throws. After the free throws, there will only be enough time to 

quickly get off a three point shot. The player at the foul line has a free throw percentage of 60%. Your best three 

point shooter is only a 25% shooter at any three point range.  

 

Your task is to run a simulation to better understand the probability of winning the game. 

 

Using spinners, simulate the situation (spinner can be made out of paper or use internet based sinners, e.g. 

http://www.mathsisfun.com/data/spinner.php). 

 Spin and record the result of the spin for each of the two free throws. 

 Spin and record the result of the one three point shot. 

 Record if you would win, lose, or tie. 

 Repeat this process 10 times.  

 

1. Based on your simulation, what are your chances for winning? 

 

 

 

 

 

2. What is the theoretical probability for a win, loss and tie? 

 

 

 

 

 

 

 
 

Three point shotFree  Throws

75%

miss

25%

make

40%

miss

60%

make

Free 

Throws 

3-point 

Shots 

Win, Lose, 

or Tie 

   

   

   

   

   

   

   

   

   

http://www.mathsisfun.com/data/spinner.php
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Activity 2: The Monty Hall Question  
 

In the game show Let’s Make a Deal, Monty Hall would sometimes show three doors to a contestant. He then 

informs the contestant that a valuable prize is hidden behind one of the three doors. The contestant would be 

asked to pick a door. After the contestant chooses a door (without opening), Monty then removes from play one 

of the doors where the prize is NOT HIDDEN. There are now 2 doors remaining, one of which has the prize. 

The contestant has already chosen one of these two doors. At this point, Monty gives the contestant the option 

of switching doors or remaining with his/her original choice. 

 

Which statement below do you think is true: 

 The probability of getting the prize is greater by switching doors.  

 The probability of getting the prize is greater by not switching doors. 

 It doesn’t matter. 

 

a. What is your conjecture? Explain.  

 

See: http://betterexplained.com/articles/understanding-the-monty-hall-problem/  for an explanation of the 

problem and an online simulation. You will want to demonstrate a few rounds of the simulation below so that 

students understand how to run it. Another option is to use an online simulation as in the link.  

 

b. Run a simulation to see if there is a difference in the probabilities between staying with the same door or 

switching. Keep track of the results. 

 “Monty” rolls a die out of the contestant’s view. If the die reads 1 or 2, then the prize (you can use a 

paper clip or a quarter to represent the prize) is placed behind Door 1.  If the die reads 3 or 4, place the 

prize behind Door 2. If the die reads 5 or 6, place the prize behind door 3.  

 The contestant rolls a die. The roll of the die will decide which door the contestant chooses. Use the 

same numbers as above. 

 “Monty” removes from play one of the doors where the prize is NOT HIDDEN. The contestant is asked 

to remain with the original choice or switch. 

 For the sake of consistency, have the contestant REMAIN with the original choice (no switch) for a set 

number of times. Later, the contestant ALWAYS SWITCHES for an equal number of times.  

 “Monty” reveals where the prize is, and the recorder writes down the results in the appropriate column.  

 

c. What are your conclusions?  

 

d. Combine your results with those of the other groups assigned to this problem. What are your conclusions? 

 

e. Explain the results of the game simulation.  

 

  

http://betterexplained.com/articles/understanding-the-monty-hall-problem/
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7.1f Optional Homework Project: Mickey Match  

 

At the school fundraiser there are two games with prizes. For Game 1 the prize is a Disney decal. For Game 2 

there are two different prizes, a t-shirt or a day pass for four to Disneyland.  Game 1 costs $1 to pay while game 

2 costs $5 to play.  

 

The game is played by picking cards without seeing what is written on the card.  The cards are:  
  

    

   

The cards are placed in two bins, as shown below: 

      BIN 1           BIN 2 
 

Mickey   Mickey     Mouse   Mouse 
              

Mickey   Mickey     Mouse   Mouse 
              

Disney   Disney     Mouse   Land 

 

Game 1: To win a Disneyland decal, you pick a card from the left bin.  If you pick “Disney” you win a decal.  

What is the probability of winning a decal? 2/6 = 1/3 

 

Game 2: To play game 2 you must draw one card from Bin 1 and one from Bin 2. Prize options:   
 

Option 1: If you draw Mickey + Mouse, you win the t-shirt.  

Option 2: If you draw Disney + Land, you win a day pass for four to Disney Land.  

Option 3: If you draw Disney + Mouse or Mickey + Land, you go home with no prize.  
 

Multiple Representations:  What is the sample space? Create an organized list, a tree diagram, or a table to see 

all the possible outcomes.   
 

List:   

S = {Mickey + Mouse, Mickey + Land, Disney + Mouse, Disney + Land} 
 

Note that in the sample space the duplicates are not listed. However, students need to be aware that there are 

duplicates.  Prompt the students by asking the number of outcomes for each of the elements in the sample space. 
 

 Mouse Mouse Mouse Mouse Mouse Land 

Mickey 

Mickey   

+  

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+   

Land  

Mickey 

Mickey 

+  

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+   

Land 

Mickey 

Mickey 

+  

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+   

Land 

Mickey 

Mickey 

+  

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+ 

Mouse 

Mickey 

+   

Land 

Disney 

Disney 

+  

mouse 

Disney 

+ 

mouse 

Disney 

+ 

mouse 

Disney 

+ 

mouse 

Disney 

+ 

mouse 

Disney 

+    

Land 

Disney 

Disney 

+  

mouse 

Disney 

+ 

mouse 

Disney 

+ 

mouse 

Disney 

+ 
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Disney 

+ 
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Disney 

+    

Land 

 

Mickey   Mouse Disney   Land 
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1. Probability Distribution: Find the probability for each outcome and add to your list, table, or tree diagram.    

 

Mickey + Mouse  
20

36
≈  0.56    Mickey + Land   

4

36
≈ 0.11 

 

Disney + Mouse   
10

36
≈ 0.28    Disney + Land   

2

36
≈ 0.06    

 

Note that the sum of the probabilities for each outcome are 1 (or 100%). 

 

2. What is the probability for winning a t-shirt? approximately 0.56, or 56%  

 

 

3. What is the probability for winning a day pass for four to Disney Land? approximately 0.06, or 6% 
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7.1g Self-Assessment: Section 7.1 

Consider the following skills/concepts. Rate your comfort level with each skill/concept by checking the box that 

best describes your progress in mastering each skill/concept. Sample problems can be found on the following 

page. 

 

Skill/Concept 
Beginning 

Understanding 

Developing 

Skill and 

Understanding 

Practical Skill 

and 

Understanding 

Deep 

Understanding, 

Skill Mastery 

1. Develop a probability model and use 

it to find probabilities of events. 

I struggle to find 

probabilities of 

events. 

Given a 

probability 

model, I can use 

it to find 

probabilities of 

events. 

I can develop a 

probability 

model and use it 

to find 

probabilities of 

events. 

I can develop a 

probability model 

and use it to find 

probabilities of 

events. I can 

show how my 

model represents 

the event. 

2. Compare probabilities from a model 

to observed frequencies. 

I don’t 

understand the 

relationship 

between 

probabilities 

from a model 

and observed 

frequencies. 

I know that 

probabilities 

from a model 

and observed 

frequencies may 

be different, but I 

struggle to 

explain why. 

I can compare 

probabilities 

from a model to 

observed 

frequencies.  

I can compare 

probabilities from 

a model to 

observed 

frequencies. I can 

explain possible 

sources of any 

discrepancies if 

applicable. 

3. Represent sample spaces for 

compound events using various 

methods. 

I struggle to 

represent sample 

spaces for 

compound 

events. 

I can represent 

sample spaces 

for compound 

events using one 

of the following: 

organized lists, 

tables or tree 

diagrams. 

I can represent 

sample spaces 

for compound 

events using 

organized lists, 

tables and tree 

diagrams.  

I can represent 

sample spaces for 

compound events 

using organized 

lists, tables and 

tree diagrams. I 

can explain which 

choice would be 

best in a given 

situation. 

4. Understand that the probability of a 

compound event is the fraction of 

outcomes in the sample space for 

which the compound event occurs. 

I don’t 

understand how 

probability is the 

fraction of 

desired outcomes 

in the sample 

space. 

I understand the 

probability of a 

compound event 

is the fraction of 

outcomes in the 

sample space for 

which the 

compound event 

occurs, but I 

sometimes have 

trouble applying 

what I know. 

I understand the 

probability of a 

compound event 

is the fraction of 

outcomes in the 

sample space for 

which the 

compound event 

occurs, which 

can be written as 

a fraction, 

decimal, or 

percent and can 

use that 

knowledge in 

contextual 

problems. 

I understand the 

probability of a 

compound event 

is the fraction of 

outcomes in the 

sample space for 

which the 

compound event 

occurs. I can 

compare this to 

probability of 

simple events. 
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Sample Problems for Section 7.1 

 

1. For each of the following situations, create a probability model, showing possible outcomes. Then find 

the probability of the given event. 

a. Sylvia has a collection of books. She has 30 reference books, 18 nonfiction books, and 64 fiction 

books. Find P(fiction book). 

 

 

 

b. The spinner illustrated to the right is spun twice. Find P(white, 

black).  

 

 

 

 

2. Don rolled a two on a fair twenty-sided die seven times out of 80 rolls. Would you expect this result? 

Why or why not? 

 

 

 

 

 

3. Represent the sample space for each of the following events. If possible, use various methods for 

representing the same space. 

a. Sum from rolling a six-side die twice 

b. Flipping a quarter four times 

c. Choosing an outfit out of a plaid, stripped or solid shirt and jeans, khakis or shorts 

 

 

 

 

 

 

 

 

 

 

 

 

4. Crysta puts each letter of her name on a piece of paper. What is the probability that she will draw a C 

and an A in any order? 
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Section 7.2: Use Random Sampling to Draw Inferences about a 

Population 

 
Section Overview: In this section students will be looking at data from samples and then making inferences 

from the samples to populations.  Students will utilize graphs of data along with measures of center and spread 

to make comparisons between samples and to make an informal judgment about the variability of the samples.   

After examining the samples, students will actually make conclusions about the population.  

 

It is important that students think about the randomness of a sample as well as how variations may be 

distributed within populations. These ideas are quite sophisticated. Activities within this section are designed to 

surface various ideas about sampling. Teachers, students and parents are strongly encourages (as always) to 

review the mathematical foundation for a more in-depth examination of the topics within this section. 
 

 

Concepts and Skills to be Mastered  

1. Use random sampling to obtain a sample from a population. 

2. Understand that random sampling procedures produce samples that can represent population values.  

3. Create appropriate plots of collected data to provide a visual representation of the samples.  

4. Compare samples of the same size from a population in order to guage the variation in the samples.  Use 

this variation to form an estimate of range of where a population value might lie. 

5. Make predictions about a population, based on the samples.  
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7.2a Class Activity: Getting Your Opinion 
 

Activity Description: Before starting the surveys, ask students to pretend like you are a rich teacher! Because you are so 

rich, you are going to take your entire class on a fabulous trip, all expenses paid. Pick two destinations for your class 

based on what you think might be appealing to very different parts of your class; for example either the Super Bowl or to 

a Broadway play in New York; the Olympics or Disney Land; an African Safari or a trip to Europe; an after school dance 

or after school movie, etc.  In order to make it even more appealing, discuss with students the pros of each trip. Don’t let 

them campaign for either of the options.  Then say:  “The whole class will to go to either ________, or to _________.  In 

order to find out what the class prefers, I am going to take a survey, but I am NOT going to ask everyone. I’m just going 

to survey a representative sample of the class.” Tell students that they can’t say their preference out loud.  They must vote 

silently on a ballot (a piece of paper ).   

 

Your teacher will describe an amazing proposal and then ask which one you’d prefer.  See activity description above.  

Preparation: cut up sheets of paper into ballots. You’ll need about 8 ballots per survey round.  Use the ballots to collect opinions using 

the four survey samples as described below.  Prepare for survey #4 by making a copy of the class roll, and cut it up so that there is 

one student’s name on each slip of paper.  Place the names in a bowl or cup, and stir the names up. 

 

Teacher: look at the sampling methods for each survey and determine if the suggestion is right for your class. You may determine 

that a different criteria would be better for your students. 

Survey 1:  Do you think that survey #1 represents the opinions of the class?  Why or why not? 
Say: “This survey will include all the people in class who have hair that is longer than their shoulders.”  Hand out survey papers to 

only those people. Ask students to choose the activity they prefer.   Collect and share the results.  Students may say that this sample 

didn’t represent the population/class, in fact the sample will usually have a disproportionate number of girls so they are likely correct.  

Allow students the opportunity to discuss the bias in this survey method and what that will do to the results.  

Survey 2:  Do you think survey #2 represents the opinions of the class?  Why or why not?  
Say: “This survey will include people who are wearing earrings.”  Hand out survey papers to only those people.  Ask students to 

choose the activity they prefer. Collect and share the results. This survey method likely also has the same bias as above (more girls in 

it than boys).  Discuss the bias in this survey and what it will do to the results.  At this point, the boys might be getting a little upset, so 

tell them you’ll use a method that includes more boys.   

Survey 3: Do you think survey #3 represents the opinions of the class?  Why or why not?  
Say: “This survey will include people who have shoes with laces.” This may result in more male students than female. Discuss with 

students if the sampling is representative of the class. Discuss biases in this method—for example, people in warmer climates (e.g. 

Southern Utah, Hawaii, etc.) may wear sandals or girls may be less likely to have shoes with laces. Tell them you are going to make 

one more effort to get a good representative survey. 

Survey 4: Do you think survey #4 represents the opinions of the class?  Why or why not?  
Say: “This survey will include people who are wearing green.”  Help students distinguish between “random” and “bias.” In the above 

three surveys, the sampling is not random because the probability of being chosen is not uniform. Samples that are not random, may 

be biased—as each of the above are. Survey 4 is also not random, but is less likely to be biased (unless green has some significance 

that day). When we survey, we want the sampling to be random so that it will be unbiased. This is a requisite for the mathematics.  

Survey 5: Do you think survey #5 represents the opinions of the class?  Why or why not? 
Say: “This survey method will include ____ people in the class.  In this bowl/cup is the name of every student in the class. I will draw 

their names randomly from it for the survey.”  Survey about 10-15 students.  Collect and share the results.  Ask students to respond to 

the question prompt above.  This method should be the least biased, and most representative of the class opinion.  Ask students why 

this method is the least biased.  Discuss why you shouldn’t trust surveys that aren’t based on random samples.  

Which of the five surveys is likely to be most representative of the class opinion?  Explain your reasoning.  
 

After the activity you may want to refer to question #3 in the homework, Inquiring Students Want to Know, and allow 

time for students to design their data collection.  
 

 

 

 

 

 

 

 

Vocabulary that should be discussed during this lesson: population, sample, random sample. 
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7.2a Homework: Getting Your Opinion 

 

1. You want to determine the most popular brand of shoe among students in your school. Which of the 

following samples would provide a good representative sample? Explain your choice, and why you didn’t 

choose each of the others.  

a. Ask every tenth student who comes into the school. 

b. Ask ten of the girls on the basketball team. 

c. Ask all the students in your class. 

d. Ask ten of your friends. 

 

 

 

 

 

2. You are trying to find out who might come to an evening school play performance. Which of the following 

samples would provide a good representative sample of the community around the school? Explain your 

choice, and why you didn’t choose the others.  

a. Ask fifty people at the local grocery store. 

b. Ask five adults from several randomly selected streets around the school area. 

c. Call random names from the school telephone directory. 

d. Place questionnaires at local stores with a sign asking people to fill them out and drop in a box. 

The least biased method of collecting a sample is (b), because this would represent a random sample of people in the school area.  

The method in (a) only asks people in grocery stores, and they might have different opinions from people who don’t go to grocery 

stores.  The method in (c) might seem really good, but it leaves out people who don’t have their phone numbers listed in a phone 

book. The method in (d) will only sample the people who care enough to fill out the questionnaire, leaving out busy people, or 

people who don’t see the questionnaire.  

 

3. Inquiring Students Want to Know! What are you and other students thinking about? Make a list of topics 

of interest to you and students in your school. For example: What college do students want to attend?  

Would students prefer starting school early in the morning and getting out early or starting school later in 

the morning and then staying later in the afternoon?  Etc. Choose a question and design a sampling method 

for collecting data from 10 or more randomly selected students. Then collect the data.  Write a paragraph 

describing the results, and why your method is or isn’t a representative sample from the population.   
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Spiral Review 
 

1. Lisa owes her mom $78.  Lisa made four payments of $8 to her mom. How much does Lisa now owe her 

mother?    78 + 4(8) = 46      Lisa owes her mom $46. 

 

 

2. Kaylee’s Bakin’ Kitchen sells fresh bread. The graph to 

the left shows batches of bread she can make and how 

much flour it takes. Is it a proportional relationship? If it 

is, estimate the unit rate? Yes, 7 cups per batch. 

 

 

 

 

 

3. What is the scale factor that takes  to ? 

 

1

3
  

 

 

 

 

 

 

4. Dave is thinking of his favorite number. He tells you that it is one more than three times Emma’s favorite 

number. The sum of their two numbers is 17. What are Dave’s and Emma’s favorite numbers? 

 

 

 

 

5. Harry’s football team loses 13 yards on one play. On the next play, the quarterback throws to a receiver for 

a gain of 13 yards. What was the change in their position? 

  

XYZ ABC
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7.2b Class Activity: Cool Jelly Beans!   
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7.2b Class Activity: Cool Beans!   
 

The big election in Jelly Town is coming in November!  The Jelly Beans 

living in Jelly Town (the bag) will cast a vote, either for Limey or for Grapey 

Bean.  Up until now, Limey Bean and Grapey Bean have been tied in the 

polls.  Limey Bean decided that if she wanted to win the election, she needed 

to do something drastic! So in October she came up with a new campaign 

slogan “I promise free sunglasses for every Jelly Bean!” Will her new slogan 

change the way the beans vote?  She hired teams of experts to survey the 

population and answer this question.  

 

The student groups in class are the experts hired by Limey Bean.  

 

 

 
# of green 

in each 

sample 0 1 2 3 4 5 6 7 8 9 10 
Tally 

Marks 
           

Total 

 
           

 

Create a dot plot with your group’s data.  

 

 

 

 

 

 

 

 

 

 

Now that Limey Bean is using the new campaign slogan, there are three possibilities for election results:   

a) The new slogan may have made no difference, Limey Bean and Grapey Bean could still be tied. 

b) The new slogan may have backfired, so that voters now prefer Grapey Bean. 

c) The new slogan may have worked as Limey Bean hoped, so that voters now prefer her over Grapey Bean. 

 

1. Which of the three possibilities (a, b, or c) do your samples support?  Justify your answer using your team’s 

survey results.  As a hint to students, ask them to find the location on their dot plot representing a tie between 

Limey and Grapey (at 5, where the number of lime = grape).  If the majority of surveys show Limey getting 

more votes, then it is more likely that she will be the winner of the election.   Note also that it is possible for 

sample results to show Grapey getting more votes some of the time. It is possible (but not likely) to get a sample 

with more grape beans than lime. 

 

 

 

 

 

Limey 

Grapey 
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2. Consider your team’s survey results.  How many of the samples had more votes for Limey Bean?  How many 

samples showed a tie? How many showed more votes for Grapey Bean? 

Identify the meaning for specific points on the plots.  For example: What does a value of 9 represent? (Limey 

wins.) What does a value of 4 represent? (Grapey wins.)   

 

 

 

3. Based on your samples, find the percent of surveys where Limey Bean had the most votes. Do you think you 

have enough evidence to declare the winner? Explain why or why not.   Most dot plots should show very few 

results with Grapey winning.  Assuming the sampling was not biased (no one looked at the beans or 

miscounted), it is justifiable to say:  “If the election were held today, it is most likely that Limey Bean will 

win.”  You can’t say you are certain Limey Bean will win, because of the variability, and because the election is 

still a month away (it is hypothetically October). You can only say that the chances for Limey Bean winning are 

pretty good.  

 

4. How variable were the results of your samples? In other words, what was the highest number of green beans 

recorded from any survey, and what was the lowest number of green beans recorded from any survey?  Refer to 

the numbers found in the table on the first page of the activity.  As seen in the table it is highly unlikely to get a 

sample with only 0, 1, 2, or 3 green beans. Ties happen about 2 out of 20 times or 10% of samples. In large 

classes with lots of samples, you should see a few 4’s and a few 10’s. Most survey results will range from 5 

through 9. 

 

5. Based on your answer above, is it possible that Limey Bean will lose the election?  Is it probable? “Possible” 

and “Probable” are two different things.  Almost anything is possible.  It is possible to win the lottery.  

However, it isn’t probable (i.e. likely).  So, based on these samples, it is possible Limey will lose the election if 

it were held today, but it isn’t probable.  

 

 

6. Summarize who you think will win the November election, and why.   
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  2          4         6         8         10 

    Number of green out of 10 

7.2b “Cool Beans!” Homework 

 

The campaign in Jelly Bean Town actually began in March with the election in November. The plots below 

represent surveys taken during the election process in March, August, and October.  Each plot shows the results 

of 20 different surveys.   

 

 

 

 

1. In the March surveys, circle the dots on the graph where Grapey Bean and Limey Bean were tied.  Based on 

the graph, who is ahead in the campaign in March?  Explain your answer.  In March, there are 4 ties 

between Limey and Grapey (dots which are found over the 5).  There are 11 out of 20 dots below the 5, 

showing Grapey in the lead. 

 

 

 

2. In the August results, circle the dots on the graph where Grapey Bean and Limey Bean were tied.  Based on 

the graph, who is ahead in the campaign in August?  Explain your answer.    

 

 

 

 

 

3. In the October results, circle the dots on the graph where Grapey Bean and Limey Bean were tied.  Based on 

the graph, who is ahead in the campaign in October?  Explain your answer.    

 

 

 

 

4. Based on the plots, is it possible that Grapey Bean could be ahead in the campaign in October?  Explain. It is 

possible.  2/20 dots show Grapey in the lead.  It just isn’t very likely that Grapey is actually in the lead.  

 

 

5. Grapey Bean isn’t going to let Limey Bean win the election based on a catchy slogan! In the week before the 

election Grapey decides to fight back by promising “More Coolness, Less Darkness!” Grapey Bean quickly 

recruited several expert survey teams to sample the Jelly Bean Town population, in hopes that the new slogan 

will turn the tide back in Grapey’s favor.   

 

 

        2       4        6       8       10 

      Number of green out of 10 

     2         4         6         8        10 

      Number of green out of 10 
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      2          4           6          8         10 

         Number of green out of 10 

        2           4          6           8         10 

            Number of green out of 10 
       2           4          6           8         10 

            Number of green out of 10 

After advertising Grapey’s new campaign slogan, the three different survey teams gathered data and plotted 

their results. There is one plot for each survey team.   

 

Was Grapey Bean’s slogan successful? Will Grapey win the election now?  Use the combined results from the 3 

teams’ surveys to justify your answer.   

 

 

 

 
    

 

 

 

 

 

 

 

 

 

 

  

 

 

Spiral Review 
 

1.   –1 × –3 × –6    –18 

 

 

2.   Show two ways one might simplify:  2(3 + 4)   

 

 

3.   Convert 0.37 to a percent. 

 

 

4.   Art’s long jump was 7 feet shorter than Bill’s. Together they jumped 41 feet.  Write and solve an equation to 

find how far they each jumped?     𝑏 + (𝑏 − 7) =  41      Bill jumped 24 ft; Art jumped 17 ft 

 

 

 

5.   Examine the graph to the right showing how many hours 

worked versus how much money was made. Explain what 

the point (2, 20) means in context of the situation and the 

unit rate. 
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7.2c Class Activity: Critter Sampling (Optional Activity) Teacher Notes 

 

Teacher notes:  Scientists often want to study and make estimates about population of plants or animals 

in a given area. To do this they use random sampling techniques.  The data from random samples are 

used to make conclusions about the populations.   

One purpose of this activity is to use samples to draw conclusions about populations and another is to 

make comparisons between populations.  Student groups will be drawing conclusions about their own critter population and then 

comparing their population to other groups. 

 

Random sampling:  Students will be doing a form of random sampling called “cluster sampling”.  Students will be working in groups 

of 4 to study their world.  The population of each world will be divided into 12 different clusters (see below) and each student will 

randomly select a cluster to study from their group’s world.   

 

Each student will analyze their own sample data, pool their data within the group, and make a conclusion about their world’s 

population.   

 

Prepare bags of critters (the populations) prior to class:  Purchase 5 different small food items of similar size to mix together.  You’ll 

need one small zip lock bag of the mix per group of 3-4 students (4 preferred). To prepare the critters: use a large bowl to mix the 5 

different small food items in equal amounts. Foods might include: stick pretzels, fish crackers, Teddy Grahams, large sized cereal 

pieces, marshmallows, etc.  Choose things that are fairly similar in size.  Small items tend to end up on the bottom of the bowl or bag.  

Don’t dump everything into the mixing bowl, hold back a portion of each item to be added later.  

 

Scoop about ¾ cup of well-mixed critters into each bag.  Add an additional ¼ cup of one of the food items per bag according to the 

table below, that is, extra marshmallows in one bag, extra Teddy Grahams in another bag, etc. Mix in well. When distributing the bags 

to the students, don’t draw the attention of the students to the differences or similarities between the bags. The idea is that the students 

will be able to identify which populations are similar and which are different, based on their plots and their tables. Label the bags in 

some way so that you can remember which ones were the same. Students will be asking this later. 

 

  

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

Prepare the Critter Worlds: Copy the Critter World sheet, one per group of students.  Students will prepare the world by folding the 

margins up to create a fence, and taping or stapling the corners so the fence stays up.   

 

 

 

  

Critter World 
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1 2 3 

4 5 6 

7 8 9 

10 11 12 
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7.2c Class Activity (Optional): Critter Sampling  

 

Your space ship has been orbiting a new flat planet full of life.  You are a 

member of a group of scientists who has been sent to study the flat planet. Your 

job as an alien biologist is to gather data about the critters, analyze the data, 

make plots and provide a summary about the area you will study. 

 

The big question is:  how is the critter population in your world similar or different from other worlds? 
You may choose to do the alphabet activity (homework associated with this activity) in class instead of this activity. 

Materials: 

Quart sized bags of critters  

Sheets of paper, rulers, pencils, tape, scissors, pieces of butcher paper to display graphs 

 

Follow the instructor’s directions for setting up the critter worlds. The bags of mixed food items represent 

different populations of critters. Give your world a name.  

 

1. Open the bag of critters and sprinkle them evenly into the world. Don’t use your hands to arrange the 

critters, just sprinkle them about. Spacing between critters does not have to be exactly equal. If needed, 

shake the world a bit or stir it with the eraser end of a pencil so that there are critters in every rectangle.  

Once you are done, hands off!  Be careful to not shake or knock the world.  (Don’t eat the critters until 

the activity is over!)  

Samples that are not well mixed will give results that can’t generalize to the populations. Emphasize the 

importance of well mixed, random samples. 

 

2. Random Sampling:  Each student in the group will randomly select a rectangle to study. To perform a 

random selection, each group should write the numbers 1-12 on similar sized pieces of paper and then 

place the numbered slips of paper into a container, mix well, and have each student draw a slip without 

looking. Some areas of the “world” will not be selected.    

 

3. How should you count critters that are partway between two rectangles?  Make a group decision.  

Student methods may vary. They may choose to count a ½ or ¼  critter so that their counts are not whole 

numbers, they may choose to round to the nearest whole numbers, or they might decide to count a critter 

as belonging in the rectangle where most of it lies. 

 

4. Count the critters in your rectangle.  Record the data in the table.   

Since the critters are not equal in shape or size, don’t expect equal numbers of each critter. 

 

 

 
Critter 

Description or 

sketch 

 

Critter 1: Critter 2: Critter 3: Critter 4: Critter 5: 

 

How many? 

 

 

     Total = 

Percent of 

total? 

 

 

     

Total = 

100% 
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5. Using the table data, create a graph showing the frequencies of each of the critter types in your sample.  

(Think:  you will be comparing your graphs to others in the group.  Why might it be better to use 

percents rather than counts to make the graph?)  

Refer to the Chapter 7 Text for examples of using bar graphs for comparing categorical data and making 

inferences about populations from the graphs. If comparisons are being made between unequal sized 

groups, percents give a better basis of comparison. However, if the samples are equal in size, then either 

counts or percents give comparable graphs. For categorical data such as this, either bar graphs or circle 

graphs are appropriate.  If bar graphs are made, they should be called bar graphs, rather than 

“histograms” because the data is categorical. Histograms are used for graphs that display a range of 

numerical values, such as heights or ages. Although pictograms can be used in drawing the graph, with 

stacks of marshmallows or Teddy Grams, this may generate graphs that don’t truly represent the data, 

unless each pictogram is equal in size.    

 

 

6. Scientists use data from samples in order to make conclusions about the world.  Compare your graph to 

the graphs made by the other members of your group.  Using the data from your samples, come to an 

agreement on an estimate for the total number of each type of critter in your world, and for the percent 

of each type of critter. 

 

World 

Population 

Estimate 

(count) 

 

Critter 1: Critter 2: Critter 3: Critter 4: Critter 5: Total 

critter 

estimate = 

 

World 

Population 

Estimate 

(percent) 

     Does your 

percent 

total = 

100 %? 

 

7. Describe the method your group used to find the estimates of the world population.   

Students may choose to calculate averages for their estimates.  However, they might recognize that if 

sample sizes are different, then averaging the data gives more “weight” to the larger samples, so they 

might come up with a way to adjust for the different sample sizes.  Once they find an estimate, they will 

need to scale it up to represent the population of the world, such as multiplying their estimate by 12.   

 

8. Within your group, decide how well your samples represented the world population.  Explain, using 

complete sentences, any problems that you might have observed with how the samples may have 

misrepresented the population.   
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9. Create a graph of the estimate for the frequencies of the critters in your world.  Post this graph in the 

room.  You can eat your critters while all the other groups are posting their graphs.  

 

 

 

 

 

 

 

 

10. Every world (bag) studied today has at least one other world with a similar population. Look at all the 

graphs posted by the different groups. Use the graphs to see if you can find the matching sets of worlds.  

Verify with your instructor to see if you were right!  

 

 

 

 

 

 

11. There is variability in between all the samples taken by students. What is “variability” and why did it 

make matching the worlds challenging? Variability means that every sample will be slightly different.  

Therefore, instead of finding exact matches between worlds, students have to look for the ones that are 

most similar. 

 

 

 

 

 

 

 

12. Why is it important to use random sampling and not just choose a rectangle to use as your sample?   

Explain why this would create a problem.  Random sampling helps increase the chance that the sample 

will be an unbiased sample from the population.  If people CHOOSE the samples, they might choose 

based on which sample has the most critters, or which one has the most variety, or which one is in the 

middle.  This creates a bias in the sample, which will also make the population estimate biased.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7WB 7 - 54 2014 University of Utah Middle School Math Project in partnership with the 

Utah State Office of Education. Licensed under Creative Commons, cc-by. 

 

7.2c Homework: Alphabet Frequency 

 

 

 

The two bar graphs above represent the frequency that letters occur in two languages, one graph represents the 

English language, the other represents the Spanish language.   

 

1. Which 3 vowels and 3 consonants occurred most frequently in the language represented by Graph A?  

Write the letters in order from most frequent to least frequent.  

 

 

2. Which 3 vowels and 3 consonants occurred most frequently in the language represented by Graph B? 

Write the letters in order from most frequent to least frequent.  

 

 

3. Use the graph to estimate the frequency of the letter “a” in each language.   Find the difference between 

the two.  

 

 

4. The  most frequent word in the English language is the word “the”.  Based on that hint, which graph, A 

or B, represents the frequency of the letters of the English language?  Explain your choice. 

Graph B.  The “e” is similar in frequency, but the “t” & “h” are much more frequent in Graph B.   

 

5.  The bar graph below is a sample of the frequency of letters used in the first two paragraphs of the book 

“Artemis Fowl: The Lost Colony”, by Eoin Colfer, written in English.  Since the graph is from a sample, the 

frequencies will vary a bit from the overall letter frequencies of the English language.  Compare the book 

sample to Graphs A and B.  Which graph is the book sample most similar to, A or B?   Explain your choice.   
The frequency plot was created on the weblink “Practical Cryptography” at:  http://practicalcryptography.com/cryptanalysis/text-characterisation/monogram-

bigram-and-trigram-frequency-counts/ 

 

 

 

  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

a c e g i k m o q s u w y 0

0.02

0.04

0.06

0.08
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Graph A 
Graph B 
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7.2c Homework Extension: Cryptograms 

Cryptograms are puzzles where a symbol or letter is substituted for the actual letter. Each of the Artemis Fowl 

books has a cryptogram at the bottom of the pages of the book, where symbols are substituted for letters, and 

readers are challenged to solve the hidden message in the cryptogram.   

One way people find clues in cryptograms is by looking at letter frequencies. The three most common symbols 

(in order) from the book “Artemis Fowl:  The Lost Colony” are shown below. Which letters do they likely 

represent?  

 

E, T and A 

 

Use letter substitution to try to solve this famous quote:  

 

YJMIR SKCN MRKCDRMU; MRXS LXIKVX YKNPU.  

 

YJMIR SKCN YKNPU; MRXS LXIKVX JIMZKQU.  

 

YJMIR SKCN JIMZKQU; MRXS LXIKVX RJLZMU.  

 

YJMIR SKCN RJLZMU; MRXS LXIKVX IRJNJIMXN.  

 

YJMIR SKCN IRJNJIMXN; ZM LXIKVXU SKCN PXUMZQS.  

--WJK-MHX 

Hints:   

I = c 

R = h 

S = y 

L = b 

Y = w 

L = b 

H = z 

J = a 

K = o 
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Spiral Review 
 

 

1. Determine if the given information will make a unique triangle. Explain why or why not. 

a. Side lengths 10, 10, 19 

 

 

b. Angles 51°, 9°, 120° 

 

 

2. 2. Solve: 3
3

4 
+ (−2

1

2
).         1

1

4
 

 

 

 

3. Examine the graph to the right showing ice 

cream and chocolate syrup needed to make 

chocolate milkshakes. Is the relationship 

proportional? If so, write an equation to 

represent the relationship. 
 

 

 

 

 

 
4. Marta is planting a garden as designed to the right. The width of the rectangle is 2 feet. A semicircle is 

attached to the width of the rectangle. How long should the length of the rectangle be if the total area is 

36.56 feet? 
4x + 3.14(4) = 36.56;x = 6  

 

 

 

 

 
5.      Two angles are complementary. One is 48 degrees more than twice the other angle. What are the two 

angles? 
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7.2d Self-Assessment: Section 7.2 

Consider the following skills/concepts. Rate your comfort level with each skill/concept by checking the box that 

best describes your progress in mastering each skill/concept. Sample problems can be found on the following 

page. 

 

Skill/Concept 
Beginning 

Understanding 

Developing 

Skill and 

Understanding 

Practical Skill 

and 

Understanding 

Deep 

Understanding, 

Skill Mastery 

1. Use random sampling to obtain a 

sample from a population. 

I know what a 

random sampling 

is, but I don’t 

know how to use 

random sampling 

to obtain a 

sample from a 

population. 

I can choose 

which procedure 

would produce 

random sampling 

from a 

population. 

I can use random 

sampling to 

obtain a sample 

from a 

population. I can 

explain my 

procedure for 

obtaining a 

random sample. 

I can use random 

sampling to 

obtain a sample 

from a 

population. I can 

explain why the 

procedure I used 

obtains a random 

sample of a 

population. 

2. Understand that random sampling 

procedures produce samples that can 

represent population values. 

I don’t 

understand what 

random sampling 

is. 

I can use random 

sampling, but I 

don’t understand 

how that 

represents the 

population. 

I understand that 

random sampling 

procedures 

produce samples 

that can 

represent 

population 

values. 

I understand and 

can explain how 

random sampling 

procedures 

produce samples 

that can represent 

population 

values. 

3. Create appropriate plots of collected 

data to provide a visual 

representation of the samples. 

I can’t create a 

plot of collected 

data. 

I can create a 

plot of collected 

data, but it 

doesn’t seem to 

provide a good 

visual 

representation of 

the samples. 

I can create a 

plot of collected 

data. It is a good 

visual 

representation of 

the samples. 

I can create a plot 

of collected data. 

I can explain why 

it is an 

appropriate plot 

that provides a 

visual 

representation of 

the samples. 

4. Compare samples of the same size 

from a population in order to gauge 

the variation in the samples.  Use this 

variation to form an estimate of range 

of where a population value might 

lie. 

I struggle to 

compare samples 

in order to gauge 

the variation in 

the samples. 

I can compare 

samples of the 

same size from a 

population in 

order to gauge 

the variation in 

the samples, but 

I struggle to use 

this variation. 

I can compare 

samples of the 

same size from a 

population in 

order to gauge 

the variation in 

the samples, and 

I can use this 

variation to form 

an estimate of 

range of where a 

population value 

might lie. 

I can compare 

samples of the 

same size from a 

population in 

order to gauge the 

variation in the 

samples, and I 

can use this 

variation to form 

an estimate of 

range of where a 

population value 

might lie. 

5. Make predictions about a population, 

based on the samples. 

I struggle to 

make predictions 

about a 

population, 

based on the 

samples. 

I can make 

predictions about 

a population, 

based on the 

samples, but I’m 

very unsure of 

my predictions. 

I can make 

predictions about 

a population, 

based on the 

samples. 

I can make 

predictions about 

a population, 

based on the 

samples. I can 

write a 

justification for 

my prediction. 
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Sample Problems for Section 7.2 

 

1.   

a. Choose the procedure that would produce a random sampling in the following situation: 

 

A car insurance company wants to know how many miles people drive each year.  

 Ask the teachers at your school how much they drive each year. 

 Call every 100th name in the phone book and ask how much they drive each year. 

 Ask truck drivers how much they drive each year. 

 

 

 

 

b. Describe a procedure that would produce a random sampling in the following situation. Explain 

why your procedure will produce a random sampling. 

 

Your school is choosing a new mascot. The principal wants the students’ opinions. 

 

 

 

 

2. Explain how your random samples in question 1 will represent the population. 

 

 

 

 

3. Belle surveyed her classmates on how many donuts they eat in a month. The following table shows their 

responses. Make a visual representation of the data. 

6 6 6 5 15 19 0 0 0 

31 2 3 4 6 6 2 8 8 

4 4 4 4 5 5 5 15 15 

5 9 2 45 1 1 1 0 5 

20 21 25 20 7 7 20 6 7 
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4. Compare the following two visual representations of how many rings some goblins are wearing. 

Describe the variation in the samples. Estimate the range of where the population value might lie. 

  
 

 

 

 

 

 

 

5. Chloe is having a sale on rings in her store. Using the data from the charts in question 4. How many 

rings should Chloe sell in a set? Explain your reasoning
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Section 7.3: Draw Informal Comparative Inferences about Two 

Populations 
 

Section Overview: In this section students calculate measures of center and spread from data sets, and 

then use those measures to make comparisons between populations and conclusions about differences between 

the populations.   
 

 

Concepts and Skills to be Mastered  

1. Make comparisons of data distributions by estimating the center and spread from a visual inspection of 

data plots.  

2. Compare two populations by calculating and comparing numerical measures of center and spread.  

3. Calculate the mean absolute deviation (MAD) as a measure of spread of a population. Measure the 

distance between the centers of two populations of similar variability using the MAD as the unit of 

measure.  
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7.3a Class Activity: Viva la Diferencia!  (Celebrate the differences!)   
Materials needed:  One die  

 

This lesson is designed to be an introduction for creating informal comparative inferences about two 

populations.  Students will compare and contrast data gathered from a sample of male students and a 

sample of female students to determine the sample set which has a larger center and spread and visually 

identify any outliers.  This lesson will rely on prior abilities in calculating measures of center and creating 

histograms/dot plots. 

 

How do female and male populations compare?  With a partner, choose a question  

below to compare female and male responses.  Choose a question that you believe you will  

find a difference between populations.  
 

 

 

a. How many letters are in your first, middle, and last name (total)? 

b. How many states can you list in 30 seconds? 

c. How many pens or pencils did you bring to class?   

d. How many buttons do you have on the clothes you are wearing right now? Include your pants buttons. 

e. How many words can you write in 30 seconds that start with the letter “g”? 

f. How many minutes does it take you to travel to school in the morning? 

g. How many pets do you have? 

h. What is the length of your shoe (in centimeters)? 

i. How many hours of television do you watch per week? 

j. How tall are you (in centimeters)? 

k. How long is your hair (in inches)? 

 

Our Question:   

________________________________________________________________________________________

_________________________________________________________________ 

 

Quietly go around the room and record the responses to your question in the table below. When a student asks 

you their question, you should also ask them your question.  Continue until you have at least 10 female  

responses and 10 male responses.   

 

 

 

When you have finished gathering your data, go to your 

teacher to have the die determine how you will display it.  

 

 If the die roll is even, construct a histogram to show male 

and female results. 

 If the die roll is odd, construct a dot plot to show male 

and female results.  

 

 

 

 

 

Boys Girls 
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1.  Does the male data or female data have a larger measure of spread?  Explain your reasoning.  
 

 

2.  Find the centers of the data for males and females. Which data has the higher center, male or female?  

 

 

3.  Are there any data points that you would consider to be outliers? 

 

 

4.  What conclusions do you draw from the comparison of males and females for your question? Write three to 

four sentences about your conclusions. 
.  

 

 

 

Review your work.  Prepare to present your data to the class.   

Create a poster that has the following:   

 1)  Your question 

 2)  A table of your data 

 3)  Histograms or dot plots of the data (determined from the all-knowing die) 

 

 

 

 

 

 

 

 
 

Skewed Left Normal Skewed Right or Positive Skew 

 

 

 

Extreme values pull the mean to 

the left of the median. Median is 

a better measure of center.  

Data is symmetrical and mean is at 

the peak.  Mean and median are 

equally good measures of center. 

Extreme values pull the mean to 

the right of the median.  Median 

is a better measure of center. 
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7.3a Homework: Review Measures of Center 

 

Find the mean for the following data sets: 

1. 2, 6, 1, 8, 10, 2, 3, 6    

  38/8 = 4.75 

 

2. 24, 14, 8, 9, 6, 5, 18, 10, 16, 22 

  

 

Find the median for the following data sets: 

 

3. 12, 8, 7, 6, 9, 5, 1, 2, 3   

 6 

 

 

4. 5, 1.6, 3, 8, 7, 11, 15.5, 18, 20, 11 

 

       

 

5. A survey was conducted where respondents gave their favorite summer temperature (in 

degrees Fahrenheit).  The results are as follows:  65, 76, 64, 78, 72, 68, 73, 72, 71, 68, 

64, 85, 80, 90.  Find the mean temperature from the survey.  Round to the nearest degree.  

 

 

 

 

REVIEW FROM 5th and 6th GRADE: 

 

MODE:  The data that occurs with the greatest frequency, or “the most”.  The mode is an indicator of the 

shape of a distribution; it is not a measure of center.   

 

MEAN: The mean is a measure of center. To find the mean of a set of data, add all the values together, 

then divide by the number of values in the data set.    

The mean of 18, 6, 0, 22, 5, 19, 7 is calculated by:   

 

MEDIAN:  The median is a measure of center. To find the median of a set of data, arrange the data in 

order from least to greatest.  If there is an odd number of values, the median will be the middle value. If 

there are an even number of values, the median will be the midpoint between the values in the middle.  

 

Example 1:  Find the median of 33, 35, 10, 19, 7, 0, 0, 6, 7.    Arrange in order:  0, 0, 6, 7, 7, 10, 19, 33, 35  

There are 9 data points.  The middle (median) value is the 5th one, which is 10.  

 

Example 2:  Find the median of 14, 6, 8, 42, 6, 11.   Arrange in order: 6, 6, 8, 11, 14, 42 

There are 6 data points.  The median is the midpoint between 8 and 11, so the median = 9.5.   

The midpoint between two data points can be found by finding the mean of the two points. (8 + 11)/2 = 9.5 



18602219 7

6


72

6
12
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20 males and 20 females were asked to approximate the number of times that they viewed Facebook 

each day.  Histograms for the data are shown below.   

 

 
 

6. Based on those that were surveyed, which group had a greater median, the boys or the girls? Explain your 

answer.  Since there are 20 data points, the median is between the 10th and 11th value.  

The median of the male data is between 3 and 4.  The median for the female data is in the 8-11 range.  The 

females’ median is higher.  

 

7. Why would mode not be a good measure of center for the female data distribution?    

 

.   

 

8. Create your own dot plots below that follow these rules: 

 Rule #1:  Dot Plot #1 must have a larger spread 

 Rule #2:  Dot Plot #2 must have a greater measure of center 

 

DOT PLOT #1           DOT PLOT #2     
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Spiral Review 
 

 

1. Simplify the following expressions.    

     

   −6(
1

5
𝑎 −

1

6
)              −

6

5
𝑎 + 1                            

1

3
(−7 −

1

6
𝑎)           −

7

3
−

1

18
𝑎 

 

 

2. Find each sum, difference, product, or quotient: 

a. −4 +  −7 =    −11 

b. 3 − 10 = -7  

c. −9(9) = -81 

d. 
-32

-8
=   4 

 

 

3. Solve and graph the following inequalities: 

a. 6x-1<17  
 

 

 

 

b. 9 ³ -4x- 7  
 

 

 

 

4. There were 850 students at Vista Heights Middle School last year.  The student population is expected 

to increase by 20% next year.  Draw a model to find what the new population will be.   1,020 students 

 

 

 

 

 

5. Shawn surveyed his coworkers on how many times they eat out in a month. The following table shows 

their responses. Make a visual representation of the data. 

36 13 19 24 0 12 35 0 30 

31 26 3 16 7 27 9 34 27 

25 1 35 16 18 17 27 19 6 

27 19 11 27 19 26 25 20 23 

30 18 26 16 0 0 20 20 18 
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7.3b Class Activity: The Glorious Mean and Median   
 

Michael Jordan was a professional basketball player in the NBA for 15 years. He is frequently mentioned as 

the greatest basketball player of all time.  He played for the Chicago Bulls team for most of his basketball 

career.   He retired from the NBA in 2003. 

The 1997-98 season is one of the years that the 

Chicago Bulls won the NBA championship.  Below is 

a list of points scored by Chicago Bulls players, from 

team members who played over 40 games in the 

season.   

The Toronto Raptors basketball team came in last 

in their division in the 1997-98 season.  Below is 

a list of points scored by team members.  

 

 Chicago Bulls 1997/98 
1 Michael Jordan 2357 
2 Toni Kukoc 984 
3 Scottie Pippen 841 
4 Ron Harper 764 
5 Luc Longley 663 
6 Scott Burrell 416 
7 Steve Kerr 376 
8 Dennis Rodman 375 
9 Randy Brown 288 
10 Jud Buechler 198 
11 Bill Wennington 167 
 TOTAL: 7429 

 

 Toronto Raptors 1997/98 
1 Kevin Willis 1305 
2 Doug Christie 1287 
3 John Wallace 1147 
4 Chauncey Billups 893 
5 Charles Oakley 711 
6 Dee Brown 658 
7 Gary Trent 630 
8 Reggie Slater 625 
9 Tracy McGrady 451 
10 Oliver Miller 401 
11 Alvin Williams 324 
12 John Thomas 151 
 TOTAL:  8583 

 

1. Compare the data in the tables without doing any calculations (only using estimates). What interesting 

features do you see within each data set and between the two data sets? Allow students time to discuss their 

observations individually before discussing as a class. Students may mention:  Jordan has far more points than anyone else, he 

has about 1300 more points than the next player on his team.  He has 1000+ more points than the top player on the Raptors.  

The Raptors actually scored more total points.  Excluding Michael Jordan, the individual Raptors players mostly outscored the 

Bulls when you compare them side by side, or pair them up player by player.  
2. Without calculating the actual values, which team do you think has a higher points per player mean?  Why 

do you think so?  Students are likely to say the Raptors because of the higher point total.  Wait for students to notice that 

there are more players listed for the Raptors, then ask if this will make a difference in their decision.  Students might mention 

that even with more players, there is still a 1000 point difference in the total points, so the Raptors will still have the higher 

mean.  Challenge the students to estimate the mean for each team before pulling out their calculators for the next question.    

3. Calculate the mean and median number of points for each team.   (Re-establish the importance of using the correct 

units of measure in all answers, in this case, “points”.) 

Bulls’ mean =   ________ 7429/11 ≈ 675.36 points Bulls’ median = _______ 416 points   

Raptors’ mean = ________8483/12 ≈ 715.25 points.   Raptors’ median = _______ 644 points 
 

4. Is the mean or the median a more accurate measure of center for the number of points scored by the Bulls?  

Explain your choice.   Allow students time to think about and discuss this question.  The mean and median values are very 

different for the Bulls, by more than 200 points, so this is a very important question with regards to choosing the right measure 

of center for this data.  When there is an outlying value far away from the rest of the values (like Jordan’s), the mean will be 

pulled away from the center, towards that outlying value.   Because of Jordan’s scoring, only 4 of the 11 players have score 

totals higher than the mean, yet the median remains the middle value no matter how many points Jordan makes.   
 

5. What would happen if you replaced Michael Jordan’s 2357 points with 10,000 points? Find the new mean 

and median for the Bull’s points per player. Did either value change by much?  Explain. 

Bulls’ Mean = ______________1370 points    Bulls’ Median = ____________416 points 
The median stays the same but the mean nearly doubled. 

This illustrates why median is a good measure of center if there are outliers.  It remains about the same even if there are outlying 

high or low values.  The mean is usually not a good description of the center when there are outlying values.  

 



7WB7 - 67    

 
2014 University of Utah Middle School Math Project in partnership with the 

Utah State Office of Education. Licensed under Creative Commons, cc-by. 

 

7.3b  Homework: The Glorious Mean and Median   

1. Ms. Parrish gave her students a math test and recorded their scores.  The following is data for all 16 

students in her class:  84, 91, 78, 94, 79, 82, 0, 98, 75, 0, 86, 91, 98, 77, 85, 90.  Find the following values: 

 

a. Mean    Median    Mode    

               

b.   The two scores that are listed as zeros are from students who were absent.  Re-calculate the measures 

of center without the zeros.   

 

Mean    Median    Mode    

       86.29    85.5      91   

      c.   Explain the effect that the zeros had on the mean, and which values provide the better indication of the   

center with respect to students’ scores.    

 

 

2. Students tried out for the school play by memorizing a part.  The students were rated on how well they 

performed and how much they were able to memorize. Their ratings were scored on a scale from 0-100.  

The scores for the 20 students are shown below.  

 

 

 

 

 

a. Sort the data from smallest to largest.  

 

 

b. Find the following values: 

 

Mean ________  Median _______  Mode ________  

 

c. The first student on the list got a sick stomach during the tryouts and couldn’t finish, so only scored a 

14.  The student was allowed to try again later that day, and now scores a 99.   

 

What is the new mean score? _____  

 

How much does the mean score change?  

 

 

d. Hamlet is calculating the new mean.  Instead of replacing the re-do score of 99, Hamlet adds the re-do 

score to the end of the list, and then divides the sum by 20.  What is result of Hamlet’s calculation? 

87.85 

 

 

e. Explain why Hamlet’s calculation isn’t really an average.   What should Hamlet do to fix the 

calculation?  The average should be divided by the total number in the sample.  Either Hamlet should 

have divided by 21, since there are now 21 scores, or Hamlet should have replaced the score of 14 with 

a 99 and divided by 20.  Let the students decide which average is the best representation of the scores 

for the class. 

14 79 68 88 84 

96 74 94 98 89 

97 88 80 94 67 

100 98 88 74 88 
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3. Ten members of the Ceramics Club meet after school to make pottery.  A survey was taken to see how far 

(in city blocks) each member of the club had to travel to get home carrying their heavy pots. The results of 

the survey are the following distances:  

12, 8, 14, 4, 16, 7, 4, 128, 11, 9 

a. Mean    Median    Mode    

        

 

b. Which would be the best measure of center for the data: mean, median, or mode?  Explain your 

answer.   

 

 

 

c. Remove the outlier and find the mean of the remaining nine data values.    New Mean    

       

The outlier is the student that travels 128 blocks to school.  Eliminating that value gives a mean of 9.44 

and a median of 9.22.  (Values rounded to the nearest hundredth.) 

 

4. Thomas and Enrique run 2 miles every week and record their times (in minutes). Their data is recorded in 

the table below: 

 

Thomas’ times 

 

 

   

Enrique’s times 

 

   

a. Which runner has data showing the greatest spread?  Explain using the plots and comparing data 

points. 

 

 

 

 

 

b. Which runner has the fastest mean time?   The fastest median? 

Thomas’s mean is 17 minutes (median is 16.5)   Enrique’s mean is also 17 minutes (median is 16).  

They have the same mean, but slightly different medians.  

 

c. If you wanted to select one of these runners to represent your class in a running competition, which 

one would you chose, and why?  
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5. Caitlin recently took a tour through Mt. Timpanogos Cave. The cave is at an elevation of 6,730 feet 

and the temperature inside the cave stays a steady 45°F throughout the entire year. Caitlin finds it 

interesting that the temperature in the cave stays the same year-round.  She wonders if the average 

annual temperature of the air outside of the cave is same or different than the average temperature 

inside the cave.  Caitlin collected data from a nearby community at a similar elevation and found the 

following typical monthly temperatures for January through December. 

        

 23.6 °,  27°,  34.2°,  42°,  50.3°,  59.1°,  66.4°,  65.6°,  56.6°,  46°,  33°,  24.5° 

   Note: Data collected from Kamas, UT (elevation: 6475 feet, and similar latitude as Mt. Timpanogos)  

a. Determine if the annual average temperature of the nearby community is the same as the temperature 

inside the cave.  Explain your answer.   

 

  

 

b. The Carlsbad Cave system is in the northern Chihuahuan Desert in New Mexico. Steven’s family was 

going on vacation to see the caves. Caitlin told Steven about how cave temperatures seem to be the 

same as the mean outside temperature. Steven thought he would use Caitlin’s information to find out if 

he would need a coat while he is inside the Carlsbad Cave system. Steven looked up the mean daily 

temperatures of the nearest large city, which was El Paso, Texas. Although he wasn’t able to find the 

averages he wanted, he found the chart below.    
El Paso temperature chart found at: http://www.weather.com/weather/wxclimatology/monthly/graph/USTX0413 

Use the chart of the average high and low temperatures of El Paso to find an estimate mean daily 

temperature of the outside air and help Steven decide if he will need a coat while he is in the caves.  
Although the overall average temperature isn’t available from the chart, it is reasonable to find the average temperature 

between the high and low for each month, 

use all 24 data points and find the overall 

average, or trace a mid-way line between 

the high and low values and estimate the 

average temperature for each month.  Any 

of these methods will provides a fairly 

accurate estimate.   

 
The calculated average is about 65oF.  

Steven will probably be okay without a 

coat. 

 

FYI: The temperature at the deepest point 

in Carlsbad Caverns is a constant 68°F.   

 

Further information about caves found at 

the National Park Service website: 
http://www.nps.gov/cave/naturescience/weather.htm 
“Caves, in general, have fairly stable 

climate conditions. Once past the 

entrance area of most caves, the 

temperature and humidity levels become 

fairly stable with little variation. This is 

mostly due to the lack of influence from 

the outside environment. The temperature 

in these caves tends to reflect the average 

annual temperature for the area at that 

given elevation, though larger cave 

systems tend to capture some heat rising 

from the earth's core making them a little warmer than they would be otherwise.”  

http://www.weather.com/weather/wxclimatology/monthly/graph/USTX0413
http://www.nps.gov/cave/naturescience/weather.htm
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Spiral Review 
 

 

1. What property is shown? 

a. 19 + 0 and 0 +19    _______identity property of addition___ 

b. 9 + 7 + 3 and 9 + 3 + 7___commutative_________________ 

 

2. Thomas flipped two quarters 80 times. He tails on both quarters 8 times. Would you expect this result? 

Why or why not? 

 

 

 

3. Willy, Abby, and Maddy are playing golf. Willy ends with a score of -9. Abby’s score is -10. Maddy 

scores +6. What is the difference between the scores of Maddy and Abby? 

 

 

 

4. Beth’s golf ball has a circumference of 4.71 in. What is the radius of her golf ball? 

 

 

 

Bidziil is examining a scale drawing of the national park near his home. He wants to hike from the park 

entrance to a hot spring. On the map, the entrance and hot spring are 2.5 inches apart. There is a scale on the 

map: 1 in = 2.5 mi. How far will he have to hike? 
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7.3c  Class Activity: Got the Point?   
This section continues to review measures of center, specifically mean and median, and now brings in a measure of spread, the mean 

absolute deviation (MAD).  Methods for calculating center and MAD are standards from the 6th grade curriculum and are being 

revisited in 7th grade as they compare centers and spreads of different data sets.  

1. With a group of 4-5 students, record the number of pens and pencils that each of you have.  Write down 

each of the numbers in the table provided below.  

 

2. Find the mean of your data.  What does the mean represent?  Answers will vary.  The mean represents the average 

number of pens/pencils for your group. 

 

Mean Absolute Deviation (Review from 6th Grade): The mean absolute deviation (MAD) is a measure of 

variation in a set of numerical data.  It is computed by adding the distances between each data value and the 

mean, then dividing by the number of data values.     

Mean absolute deviation is contained in the 6th grade core.  This lesson is meant to revisit the topic and allow 

students to use that skill in comparing two different populations.   

3. Find the mean absolute deviation for the data you collected. 

 

 Number of 

pens/pencils 

Mean 
All values in this 

column will be the same  

|number – mean| 
All values should be positive. 

Student 1    

Student 2     

Student 3    

Student 4    

Student 5    

  

TOTAL:   

 

AVERAGE 

(MAD): 

 

 

4. In problem #3 above, you found the mean absolute deviation for your group’s data.  On the number line 

below, mark the position of the mean.  Put large bracket symbols [  ]  above and below the mean at a distance 

of one mean absolute deviation. 

 

 

 
 

5. Write down the mean and MAD for another group. Like you did above, mark the position of the mean on 

the number line below.  Put large bracket symbols [  ]  above and below the mean at a distance of one mean 

absolute deviation. 

 

 
6.  Is the MAD for your group higher or lower than the other group? What does it mean if a group has a higher 

MAD?     
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7.3c Homework: Analyzing Data Using MAD 

 

EXAMPLE for Mean Absolute Deviation (MAD):  

The MAD is a measure of the spread of data.  The higher the MAD, the more the data is spread out.  

The table below shows the 6 fastest birds in the world and their maximum recorded speeds.  
 

Animal 
Maximum Recorded 

Speed (in mph) 

Peregrine Falcon 242 

White-throated Needletail 105 

Eurasion Hobby 100 

Frigatebird 95 

Anna’s Hummingbird 61 

Ostrich 60 

 

To find the MAD, first find the mean (average) speed of the birds by adding all of the data and dividing the 

sum by the number of values.  

  

 

Next, find the deviation (distance) from the mean for each bird.  Recall that absolute value means you’re 

looking for a “distance” between values and distance is always positive.  

Finally, calculate the average of the deviations from the mean, known as the mean absolute deviation, or 

MAD. 

 |speed for each bird – mean| Deviation from the mean 

Peregrine Falcon |242 – 110.5| 131.5 

White-throated Needletail |105 – 110.5| 5.5 

Eurasion Hobby |100 – 110.5| 10.5 

Frigatebird |95 – 110.5| 15.5 

Anna’s Hummingbird |61 – 110.5| 49.5 

Ostrich |60 – 110.5| 50.5 

 Mean Absolute Deviation = 43.83 

 

What does the MAD indicate?  For this data, the MAD shows that average difference between each bird’s 

speed and the mean is 43.83 mph.  

 

Notice that the Peregrine Falcon’s speed is the farthest from the mean.  If you use the MAD as a unit of 

measure, anything that is 3 MAD from the mean is very unusual.  The Peregrine Falcon is three MAD’s from 

the mean.   (3 · MAD) = (3 · 43.83) =  131.5.  The Peregrine Falcon is unusually fast, even compared to the 

other 5 fastest birds in the world! 

 

  



242105100956160

6


663

6
110.5
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1. Students in 7th and 9thth grade were asked the number of hours they slept on non-school nights.  Data from 

20 students in each grade were randomly selected and the histograms for the data are shown below. 

 

                                                 

             7th Grade Students                                      9th Grade Students 

 
 

 

1. Find the median of the sleep data for both the 7th grade students and the 9th grade students. 

There are 20 students, so the median can be found by looking at the value between the 10th and 

11th student.   

  7th grade median:  _____________  9th grade median:  _____________  

                       

2. Without computing, would sleep data for the 7th grade students or the 9th grade students 

have a larger MAD?  Explain your answer.  9th grade has a larger variation, so it would have a 

larger MAD. 

 

3. Compare the two graphs.  Using the graphs and your calculations, write a few sentences about the 

conclusions that can be made about the amount of sleep that these twenty 7th grade students get compared to 

the twenty 9th grade students. 

 

   

 

4. One statistic used in baseball is how many bases that players steal. This table shows the number of bases 

stolen by Ken Griffey Jr. and Rickey Henderson each year from 1990 – 2000.    

 

Ken Griffey, Jr. aka “The Kid”   

 

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 

Stolen 

Bases 

16 18 10 17 11 4 16 15 20 24 6 

 

Rickey Henderson aka “The Man of Steal”   

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 

Stolen 

Bases 

65 58 48 53 22 32 37 45 66 37 36 
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a. Create dot plots or histograms to provide a visual comparison between the two sets of data.   

 

 

 

 

 

 

 

 

b. Which player had the highest measure of center for the number of stolen bases? Calculate, and explain your 

answer. 

 

 

 

 

 

 

c. Which player had the greatest spread for the number of stolen bases? Explain your answer by calculating 

the mean absolute deviation (MAD) for each player. 

Ken Griffey, Jr:   Mean = 14.3      

 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000  

|number-

mean| 

1.7 3.7 4.3 3.3 10.3 1.7 0.7 5.7 9.7 8.3 4.7 MAD: 

≈ 4.7 

 

 

Rickey Henderson:  Mean = 45.4 

 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000  

|number-

mean| 

            

 

 

 

 

 

d. Based on the data, which player would you say has the greater number of stolen bases for their entire 

career? 
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Spiral Review 

 
1. Shawn surveyed his coworkers on how many times they eat out in a month. The following table shows 

their responses. Find the mean, median, and mode of the data. 

 

Mean: _____ 

 

Median: _____ 

 

Mode: _____ 

 

2. Find the following quotients: 

a. 
3

5
¸ -

1

8

æ

èç
ö

ø÷
  

b. 
-0.78

-0.02
  

c. 
-10

4
  

 

3. In the diagram to the left, find the missing angles’ 

measures:  

 

 

 

 

 

 

 

4. Ms. Stanford lives in Alaska. When she leaves for work 

one wintry morning, the temperature is -7° F. By the 

time she comes home, the temperature has increased 

12°. What is the temperature when she comes home? 

 

 

 

5. Nellie’s bedroom is triangular. She measures the walls as having the following lengths: 10 feet, 10 

feet, and 20 feet. How can you tell that she didn’t measure correctly? 

  

angle measure 

ÐBAE   

ÐCAE   

ÐDAF   
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7.3d Class Activity: NBA Heights 

In this activity we will use the MAD to compare the spread of two populations.  

 

Just how much taller are NBA basketball players than students?  
You will compare the heights of 25 professional basketball players to the  

heights of members of your math class.  

 

 

 

 

Your Height (centimeters)____________  
 

 

 

 

 

 

Record your height, and the height of your classmates in the table below. 

 

 

  

 

 

 

 

 

 

 

  

Basketball Player Heights 

(centimeters) 

 
Student Heights (centimeters) 

181 204 
1] _________ 13] _________ 25] _________ 

184 205 
2] _________ 14] _________ 26] _________ 

186 205 
3] _________ 15] _________ 27] _________ 

190 206 
4] _________ 16] _________ 28] _________ 

192 208 
5] _________ 17] _________ 29] _________ 

194 210 
6] _________ 18] _________ 30] _________ 

196 210 
7] _________ 19] _________ 31] _________ 

198 211 
8] _________ 20] _________ 32] _________ 

199 213 
9] _________ 21] _________ 33] _________ 

200 214 
10] _________ 22] _________ 34] _________ 

201 215 
11] _________ 23] _________ 35] _________ 

202 221 
12] _________ 24] _________ 36] _________ 

203  
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2. Compare the typical height of students and basketball players: 

a. Calculate the mean of each population.  Show all calculations.  Round to the nearest centimeter. 

 

 

Basketball player’s mean height  = _________202 cm Students’ mean height = ________  

 

b. How far apart are the mean heights of basketball players and the students, measured in centimeters?  

 

3. Calculate the spread of the student heights : 

a. In the table below, write down the heights of each member in your group. Use the class mean to 

calculate how much each student in your group varied from the mean.  

 

Student 

Number 
Height (cm) 

Deviation From Mean 

|height – mean| 

   

   

   

   

   

b. With the direction of the teacher, record all the other groups responses in the table below.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Height Deviations from the Class Mean 

|height – mean| 

1] _________ 13] _________ 25] _________ 

2] _________ 14] _________ 26] _________ 

3] _________ 15] _________ 27] _________ 

4] _________ 16] _________ 28] _________ 

5] _________ 17] _________ 29] _________ 

6] _________ 18] _________ 30] _________ 

7] _________ 19] _________ 31] _________ 

8] _________ 20] _________ 32] _________ 

9] _________ 21] _________ 33] _________ 

10] _________ 22] _________ 34] _________ 

11] _________ 23] _________ 35] _________ 

12] _________ 24] _________ 36] _________ 
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c. Calculate the mean absolute deviation (MAD) for the class. Round to the nearest centimeter. 

 

 

 

 

4. The MAD for the heights of the basketball players is 8 cm. Use measure of center, spread and MAD to 

compare and contrast your class’s height to that of the NBA team. Discuss your findings below: 
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7.3d Homework: NBA Heights    

 

 

 

Someone who is more than 3 MAD’s shorter (or taller) than the mean height is considered unusual.  Use the 

basketball player height data to answer the following questions about some unusual basketball players.  

 

1. Mark the mean height for the basketball players on the number line (you calculated the mean in the class 

activity, #2).  Measure 1 MAD (8 cm) above and below the mean, and mark each with a “1”.  Then 

measure 2 MAD above and below the mean and mark that distance with a “2”.  Repeat for 3 MAD above 

and below the mean.  

Mean at 202, 1 MAD from the mean at 194 & 210.  2 MADs from the mean at 186 and 218,  3 MADs 

from the mean at 178 and 226 

 

 

 

 
 

 

 

 

 

2. Tyrone “Muggsy” Bogues was a professional basketball player from 1987-2001.  He was only 5 ft. 3 in 

tall, which is 160 centimeters.  Place a mark on the number line for Muggsy’s height, and estimate how 

many MAD’s his height is from the mean.  

 

 

 

3. Yao Ming played professional basketball from 2002-2010.  He was 7 ft 6 in tall, which is 229 cm.  Place a 

mark on the number line for Yao Ming’s height, and estimate how many MAD’s his height is from the 

mean.  

 

 

4. Whose height was more unusual, compared to the basketball players in this data set, Muggsy’s or Yao 

Ming’s?    

 

 

 

 

 

 

 

 

 

 

 

 

3        2        1    Mean    1         2        3 
M

u
g
g

sy
 

Y
ao

 M
in

g
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Spiral Review 

 
1. Find the following quotients: 

a. -
3

7
¸ -

1

4

æ

èç
ö

ø÷
  

b. 
-1.7

0.1
  

c. 
93

-5
  

 

2. Choose the procedure that would produce a random sampling in the following situation: 

 

In compiling a brochure about Mathville, the city council wants to know how long people have 

lived in the city.  

 Ask everyone in one neighborhood how long he or she has lived there. 

 Call every 10th name in the phone book and ask how long he or she has lived there. 

 Ask students at the university how long he or she has lived there. 

 

 

3. Amie is making cookies for a math party. She has a triangular cookie cutter that is 3 in. on the base and 

3.5 in. tall. She rolls her cookie dough into a square with a length of 15 in. About how many cookies 

will Amie be able to make? 

 

 

 

4. Wayne buys a new tie. The tie is 20% off and then he has a coupon for an additional $2 off. If Wayne 

pays $46, how much was the tie originally? 

 

 

 

5. The following list is the names of students in Ms. Jones’ kindergarten class. Find the mean, median, 

and mode for the lengths of their names.  

 

a. Mean: _____  

 

b. Median: _____ 

 

c. Mode: _____ 

 

 

 

 

  

Jillian Justina Chris Jodi Casey 

Carl Nick Bart Diego Doug 

Amber Pat Kristie Kaylee Louise 
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7.3e  Class Activity: MAD about M&M’s  

Below is data collected for the number of M&Ms in 30 small and 30 large bags of M&Ms. As you can see a 

small bag contains 1.69 oz. while a large bag contains 3.14, however the actual number of candies varies. The 

mean and MAD for both small and large bags are also provided. On the next page you will display these data. 

 

M&M Data for Students 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SAMPLE # 

Small 

Bag 

(1.69 oz) 

Large 

Bag 

 (3.14 oz) 

 

SAMPLE # 

Small 

Bag 

(1.69 oz) 

Large 

Bag  

(3.14 oz) 

1 52 103  16 55 104 

2 54 107  17 53 104 

3 56 99  18 56 102 

4 53 103  19 52 107 

5 52 104  20 56 103 

6 54 99  21 54 104 

7 57 100  22 51 103 

8 55 107  23 55 101 

9 54 107  24 56 102 

10 54 104  25 54 103 

11 52 103  26 52 104 

12 53 102  27 54 102 

13 55 104  28 50 102 

14 56 103  29 52 103 

15 59 103  30 54 100 

 Small Bag Large Bag 

Mean 54 103 

MAD 1.47 1.48 
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In the space below, create a dot plot for the number of M&M’s in the small bags of M&M’s and create a dot 

plot for the number of M&M’s in the large bags of M&M’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of M&M in the small bag. 

Number of M&M in the large bag. 
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1. How does the spread for the number of M&M’s in a small bag compare to the number of M&M’s in a large 

bag?  Explain your answer.  

Students may compare the spread based on the dot plots or by comparing their MAD’s.  Visually students will 

identify that the 2 sets of data have approximately equal variability and the values for the MAD would confirm 

that claim.  As a class, ask the students what they would think would be a reasonable MAD value.  Would a 

mean absolute deviation of 5 M&M’s seem reasonable?   10 M&M’s?  1 M&M?    

 

 

 

 

 

 

 

 

2.  On your dot plot below, circle the mean for each data set.  What is the difference between the mean for a 

small bag of M&M’s and the mean for a large bag of M&M’s? 

 

(see number lines below)  103  54 = 49 M&M’s; almost an entire small bag of M&Ms 

103 and 54 should be identified on the number line. 

 

 

 

 

 

 

 

 

What is the difference between the centers as a multiple of the MAD value?  

 

 

 

 

3.   The mean absolute deviation for both data sets is approximately 1.5 M&M’s.  Approximate the number of 

MAD’s between 54 and 103. 

 

 

Have each student reason through the question rather than use a calculator. Have them write down their guess.  

 

Possible student estimation strategies:  Students could use the number line in #2 to count the number of MAD’s 

(1.5 units)  between 54 and 103.  Students may find it easier to mark off every 3 units and then double that 

number for their answer (see number line below). Other students may use other methods of reasoning to come 

up with an estimate.  Approximations should be around 32 MAD’s. (32
2

3
) 

 

 

 

 

 

 

 

2014 University of Utah Middle School Math Project in partnership with the 

Utah State Office of Education. Licensed under Creative Commons, cc-by. 

 



7WB 7 - 85 

 

Estimate the following: 

1. 35/4  ≈ 9  

2. 14/3  ≈ 5  

3. 35/6 ≈  6  

4. 63/5 ≈ 13  

5. 120/8 ≈ 15 

6. 1850 / 15 ≈ 123 

7. 7/0.5 ≈ 14 

8. 654 / 4 ≈  164 

9. 18 / 2.5 ≈ 7 

10. 12/1.5 ≈  8  

 

4.   Calculate the number of MAD’s between 54 and 103 by dividing the distance between the means by the 

MAD.   

 

 

Distance between the means  =  ________ mean absolute deviations  32
 2

3
     

 Explain to the students that the mean of the large bag of M&M’s is about 33 MAD’s larger than the 

mean of the small bag.   

 

 

5.  Suppose that a 2.17 oz. bag of Skittles has a MAD of approximately 1.5.  There are an average number of 57 

Skittles in a bag. 

 

a. Measure the distance between the means of the 2.17 oz bag of Skittles and the 1.69 oz. bag of M&M’s.   

 

57  54 = 3 pieces of candy 

b. Rewrite your answer in part (a) using MAD as the unit of measure. 

 

_________  pieces   is the same as   _______ MAD units 
                      (Difference in means) 

         3                     2 

 3/1.5 = 2.  For every 3 pieces, it is equivalent to 2 MAD.  

6.  Suppose that a 14 oz. bag of Skittles also had a MAD of approximately 1.5 with a mean of 360 Skittles.   

 

a. Measure the distance between the means of the 14 oz. bag of Skittles and the 1.69 oz. bag of M&M’s.   

240  57 = 183 pieces of candy 

 

b. Rewrite your answer in part (a) using MAD as the unit of measure. 

183/1.5 = 122 MAD 
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7.3e Homework: MAD About Precipitation 

http://www.currentresults.com/Weather/US/average-annual-state-precipitation.php  

1. Utah has an average precipitation of 12.2 inches per year, with an MAD estimated of 4.5 

inches. Utah is ranked 49th for precipitation out of all the states. (Nevada is 50th.)  

Precipitation includes both rain and snow.  

a. What does mean absolute deviation (MAD) measure, in terms of precipitation in Utah? The MAD is a 

measure of how spread out the precipitation amounts are for different locations within the state of Utah.  

The average absolute distance from the mean is about 4.5 inches of precipitation.   

 

 

b. One of the driest cities in Utah is Wendover, getting only 4.1 inches of precipitation per year.   How 

many MAD away from the mean is the precipitation amount for Wendover?  12.2 – 4.1 = 8.1 inches of 

precipitation.  8.1 inches / 4.5 inches = 1.8 MAD Remind the students that units of measure are a very 

important part of the answer.  

 

c. One of the wettest places in Utah is Alta Ski Resort, getting about 54 inches of precipitation per year.  

How many MAD away from the mean is the precipitation amount for Alta?  

 

 

 

2. The state of Hawaii has an average precipitation of  63.7 inches per year, 

with an MAD estimated of 14 inches.  Hawaii is ranked in 1st place for 

precipitation out of all the states.  

 

a. One of the driest places in the state of Hawaii is Makena Beach, on the 

island of Maui.  It gets about 17 inches of precipitation per year.  How 

many MAD away from the mean is the precipitation amount for Makena 

Beach?   

 

 

b. One of the wettest places in Hawaii is Hilo, on the island of Hawaii. It gets about 127 inches of rain per 

year.  How many MAD away from the mean is the precipitation amount for Hilo?  

 

 

 

3. How much larger is the MAD for precipitation in the state of Hawaii than the MAD for precipitation in 

Utah?  About 3.4 times as large.  Estimates are appropriate, so an appropriate answer could also be: between 

3 and 4 times as large. 

 

 

4. Recall that the MAD for precipitation in Utah is estimated at 4.5 inches, and for the state of Hawaii it is 

estimated at 14 inches.   What does that tell you about the range of precipitation values for Utah compared 

to the range for the state of Hawaii?   The range of values for precipitation in Utah is a lot less than for the 

state of Hawaii, or in other words, the precipitation in Utah is more similar throughout the state than for 

Hawaii. FYI: the windward sides of the Hawaiian Islands are usually semi-deserts, while the leeward sides 

are tropical forests.    
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Spiral Review 
 

1. While living in Mexico City as a foreign exchange student, Ricky kept track of the temperature at noon 

every day in February. Find the mean, median, and mode temperature in February. 

 

Mean: _____ 

 

 Median: _____ 

 

 Mode: _____ 

 

2. Every morning, Myles picks a random shirt and random pants from his closet. 

If he has blue, red, brown, and orange shirts and jeans or khakis for pants, what is the probability the 

Myles will be wearing a brown shirt and jeans? 

 

 

 

3. Find the value of x in the diagram to the right:  

 

 

 

 

 

 

 

 

 

 

 

 

4. Eden is planting a garden. Her garden plot is 14 1
2
 feet long. Strawberry plants should be planted about 

1 1
2

feet apart. How many strawberry plants can she fit in one row if she has a 1
2

 foot empty space on 

each side? 

 

 

 

 

 

5. Ines is standing on a dock 3 feet above the surface of the lake. She dives down 10 feet below the dock. Then 

she comes up 7 feet. Where is she now? Write a number sentence showing her movement.  

55 57 58 52 

54 55 57 58 

56 59 63 62 

65 64 65 64 

60 61 62 57 

58 54 58 60 

59 64 62 63 
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7.3e  MAD Olympic Games!  -  

 
Teacher Notes: 

This lesson is intended to demonstrate that computing MAD values of two data 

sets allows for the comparison of a single data value in each set to one another.  
 

 For example, suppose that the average amount of ice-cream an American eats per 

year is 48 pints with a MAD value of 6 pints and the average number of hot dogs 

eaten per year is 70 with a MAD of 8 hot dogs.  Patrick ate 63 pints of ice-cream this year and Monique ate 86 hot dogs this year.  

Who was more unusual in the amount they ate compared to the mean?   The amount of ice-cream that Patrick ate that year is 2.5 

MAD’s away from the mean.  (63  48) / 6 = 2.5  The amount of hot dogs that Monique ate that year is 2 MAD’s away from the 

mean.  (86  70) / 8 = 2. The conclusion is that Patrick’s ice-cream eating is more unusual than Monique’s hot dog eating compared to 

their respective averages. 
 

This activity is intended to be a 2-day activity.  The first day, the students will be competing in two “Olympic Games”,  Penny 

Races and Blind Balance.  They will be paired up with another student so that while one is competing, the other is measuring and 

recording the data. 
 

Instructions for Penny Races: 

Supplies needed:  Pennies and one timer per student pair (student might use their phones) 

Students will be rolling a penny across a tile floor and measuring the distance traveled. The hallway 

would be a great place for the students to roll their pennies.  For ease, have students measure the distance in 

terms of the number of complete tiles that it was able to travel. No partial tiles allowed.  Agree as a class on 

rounding down to the nearest tile: for example, if the penny goes 10.7 tiles, then the students should record 10 

tiles. If you do not have access to a tile floor, you might use the gym.  Use masking tape and put a tape mark 

down for every one foot increment.  Label each tape mark based on the foot marking, for example at 4 feet from 

the starting line, put a piece of tape on the floor that is labeled “4.”  

 

 
 

Instructions for Blind Balance: 

 Supplies needed: Timers (again students might use their phone)  

 Students will be standing crane style:  eyes closed, standing on one foot with leg bent in front of 

body, and arms outstretched.  Students will measure the time they are able to maintain the position without 

dropping their leg, tipping over, or opening their eyes.  Students will be in pairs.  One students will balance 

while the other uses the timer and then switch roles and repeat. 

 

Possible Alternate Activities: 

If these activities are not feasible, here are some other options: 

 Q-tip Javelin Throw – Students toss a Q-tip to see how far it travels.  This is similar to the penny races.  You may 

choose to measure distance by the number of tiles or using a tape measure. 

 Tongue Tied – Give the students a passage to have the students read, such as the Gettysburg address. Students will 

record the time it takes them to coherently read through the entire passage.  If they cannot be understood, they must 

restart the passage. 

 Paper Clip Puzzle – Each student pair is given 5 paper clips.  The students will measure the time it takes to string 5 

paper clips together and then take them apart again.   

 

Note that students might feel uncomfortable if they have unusually large or small values.  Make note to the students that being an 

outlier is awesome!  It makes the data interesting!   

 

Important!:  This is the first day of the 2-day activity. At the end of the first day, collect the student’s data.  Prior to the next class, 

compute the mean and MAD for each.    

 

Online Calculator to compute Mean and Mean Absolute Deviation: 

http://www.alcula.com/calculators/statistics/mean/ 

http://www.alcula.com/calculators/statistics/mean-absolute-deviation/ 

 

Disclaimer:  This activity assumes that the data collected is symmetrical and approximately normal in order to use the mean as a 

measure of center and mean absolute deviation as a measure of the spread.   
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7.3f Classwork: MAD Olympic Games!    

 

Instructions:  As a class,  you will be competing in two MAD 

Olympic events:  Penny Races and Blind Balance.  You will be 

working with a partner as you compete.   

 

Penny Races: 

With your partner, decide who will be competing first.  The goal for this event is to roll a 

penny as far as you can across the floor. 

 Roll the penny across the tile floor.  

 Count the number of full tiles the penny traveled from the starting line. Partial tiles don’t 

count! 

  Record the data in the table at the bottom of the page by the star        

for the first student and by the diamond          for the second student... 

Blind Balance: 

The partner who went second in Penny Races gets to go first in Blind Balance. The goal 

for this event is to see how long you can stand in the crane position: standing on one 

leg, with your arms outstretched, and your eyes closed. One partner will balance while the 

other records time using a timer. Timing ends when your foot touches the ground, you 

tip over, or if you open your eyes.   

 

 Student #2:  Stand on one foot, with your arms outstretched, and your eyes closed 

 Student #1:  Use a timer to measure how long your partner can stay in the crane position.  Record their 

time in the bottom of the page by the heart    .  Round to the nearest second. 

 

Switch roles and repeat.  Record Student #1’s time by the smiley face.   

 

Once you have finished recording the data, tear out and turn in. Only turn in one for both you and your partner. 

 

PENNY RACES: NUMBER OF FULL TILES: 

Student #1:    

Student #2: 
           

 

BLIND BALANCE TIME: 

Student #1:             

Student #2:             
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MAD Olympic Games: Day II 

 

 

Gold Medals in the MAD Olympic Games: 

 

Write down the top records in the two event: 

 

 Penny Races:   ________ tiles 

 

 Blind Balance:   ________ seconds 

 

“Best of the Best” Title Winner: 

1.    The MAD Olympic Officials want  to give a “Best of the Best” Title.  Which winner do you think did the 

best compared to the rest of the class, the Penny Races winner or the Blind Balance winner?   

 

 

 

2.   MAD Olympic Officials insist that the “Best of the Best” Title must be given to the player that performed 

the best in their event compared to the other competitors.  The officials have included the mean and mean 

absolute deviations for each event.  Record these values below: 

 

 

 

 

PENNY RACES BLIND BALANCE 

Mean: Mean: 

MAD: MAD: 

Note: Discuss with the students that in order to use the mean as a measure of center and the mean absolute 

deviation as a measure of spread, the data collected must be approximately normal.  For the sake of this activity, 

have the students assume that the data is approximately normal (which it may or may not be). 

3.  Ms. Needa Winna suggested that the winner of the title should be the person that has the record that is the 

farthest from the mean in that event.    

  

A) Calculate the absolute difference between the Penny Races record and the class mean for the Penny 

Races Event 

  |Penny Races Record – Mean| =  

 

B) Calculate the absolute difference between the Blind Balance record and the class mean for the Blind 

Balance Event. 

  |Blind Balance Record – Mean| =  

Solutions will vary depending on class data.  Make sure that the students use correct units when they write their  

answers.  In (A) the units will be in tiles and in (B) the units will be in seconds. 

 C)  Is this a good method in determining a winner?  Why or why not? 

This is not a good method.   The events have different units of measure, so it is not possible to make a 

comparison.   How would the absolute difference for the Penny Races event  be different if it was measured in 

inches?  The following questions will lead the students to convert the absolute differences into MAD units and 

therefore will allow for comparison.  
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4.    Mr. Hooda Champ suggests that the winner should be whichever event winner has the record that is the 

greatest number of MAD units away from the mean.   

 

 A) Calculate the number of MAD units away the Penny Race record is from the mean by diving the 

absolute deviation (#3A) by the Penny Races MAD.   

 

 

 

 

 B)  Calculate the number of MAD units away the Blind Balance record is from the mean by diving the 

absolute deviation (#3A) by the Blind Balance MAD.   

 

 

 

 

C)  Is this a good method in determining a winner?  Why or why not? 

This is a proper method in determining who is better at their particular event compared to the class.  Both 

records have been converted to MAD units and can therefore be compared.  The player that is the largest 

number of MAD units away from the mean is the most different from the class and is more of an outlier than the 

other.    

 

5.  Who should receive the “Best of the Best” Title?  Explain your answer. 

Answers will vary depending on the class data.  The student who would be given the 

“Best of the Best” title is the one whose record is the largest number of MAD units 

away from the mean.   
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7.3f Homework : MAD Olympic Games 

1. Martin participated in a hot dog eating contest.  He ate 30 hot dogs in 10 minutes.  The average number 

of hot dogs eaten by the contestants was 12 hot dogs with a MAD of 6 hot dogs. 

 

a. Martin ate   ______   more hot dogs than the average contestant.  

 

b. Find the number of MAD units Martin was from the mean. 

18/6 = 3 

 

2. According to Pew Internet (2012), teenagers send an average of 60 texts per day.  Suppose  that the 

mean absolute deviation is 15 texts.  Lily sends about 35 texts per day.   

 

a. Lily sends ________  fewer texts per day than the average teenager.   

 

b. Find the number of MAD units Lily is from the mean.   

 

 

Anya recently got an 85% on her Geography test and a 90% on her Spanish test.  She knows that she got a 

higher grade on her Spanish test, but wonders which test she did better on compared to the class.  

 

3.  How many MAD units away was her Geography test score from the class average?    The Geography 

test had a mean of 70% with a MAD of  5%.   

 

|85%  70%| = 15%  Anya scored 15% higher than the class. 

15% / 5% =  3   Anya’s score is 3 MAD units away from the mean. 

 

4. How many MAD units away was her Spanish test score from the class average?  The Spanish test had a 

mean of 80% with a MAD of 5%. 

 

 

 

 

5. Which test did Anya do better on compared to the rest of the class? 

 

 

 

Who’s more unique??   

Joyti Amge – Height: 25 inches  Sultan Kösen – Hand Span:  28 cm 

Mean Height:  65 inches Mean Hand Span:  21 cm 

MAD:  3.5 inches MAD:  2.2 cm 
 

6. Use the data in the table to determine who is more unique, Joyti Amge, the shortest woman in the world, 

or Sultan Kösen,  the man with the largest hand span in the world? 
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Spiral Review 
 

1. Find the missing information about the following circle: 

 

Diameter: _____ 

 

Circumference: 15.7 cm 

 

Area: _____ 

 

2. Write and solve an inequality for the following problem: The five times the sum of a number and 11 is at 

most 175.  

5(x +11) £175

x £ 24
  

 

3. Represent the sample space for each of the following events. If possible, use various methods for 

representing the same space. 

a. Sum from rolling a four-side die twice 

b. Flipping a quarter twice 

c. Choosing an ice cream sundae from vanilla, chocolate or strawberry ice cream and sprinkles, hot 

fudge, whip cream or caramel topping 

 

 

 

 

 

 

4. Write and solve an equation for the following problem: Emanuela is arranging her living room. The 

living room is 10.4 feet wide. Her couch is 7 feet long. How much space should be on each side of the 

couch for it to be centered along the wall? 

 

 

 

5. The following table shows the amount of dry cereal and water to make hot wheat cereal. Is the 

relationship of cereal to water proportional? Why or why not? 

Dry Cereal Water 
3

16
 c 1 c 

1
3
 c 1 2

3
c 

2
3

c 3 1
4

c 
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7.3g Self-Assessment: Section 7.3 

Consider the following skills/concepts. Rate your comfort level with each skill/concept by checking the box that 

best describes your progress in mastering each skill/concept. Sample problems can be found on the following 

page. 

 

Skill/Concept 
Beginning 

Understanding 

Developing 

Skill and 

Understanding 

Practical Skill 

and 

Understanding 

Deep 

Understanding, 

Skill Mastery 

1. Make comparisons of data 

distributions by estimating the center 

and spread from a visual inspection 

of data plots. 

I can make an 

appropriate plot 

of data, but I 

struggle to 

visually compare 

two data 

distributions. 

I can compare 

two data 

distributions by 

visually 

inspecting the 

data plots. 

I can compare 

two data 

distributions by 

estimating the 

center and spread 

from a visual 

inspection of 

data plots. 

I can compare 

two data 

distributions by 

estimating the 

center and spread 

from a visual 

inspection of data 

plots. I can write 

an explanation of 

how they 

compare. 

2. Compare two populations by 

calculating and comparing numerical 

measures of center and spread. 

 

I struggle to 

calculate the 

center of a 

population. 

I can calculate 

the center (mean, 

median, mode) 

and spread 

(MAD), but I 

struggle to use 

those measures 

to compare two 

populations. 

I can compare 

two populations 

by calculating 

and comparing 

the center and 

spread. 

I can compare 

two populations 

by calculating 

and comparing 

the center and 

spread. I can 

write an 

explanation of 

how they 

compare using 

those measures. 

3. Calculate the mean absolute deviation 

(MAD) as a measure of spread of a 

population. Measure the distance 

between the centers of two 

populations of similar variability 

using the MAD as the unit of 

measure. 

I struggle to 

calculate the 

mean absolute 

deviation. 

I can calculate 

the mean 

absolute 

deviation. 

I can calculate 

the mean 

absolute 

deviation. I can 

measure the 

distance between 

the centers of 

two populations 

of similar 

variability using 

the MAD as the 

unit of measure. 

I can calculate 

and explain the 

meaning of the 

MAD of a 

population. I can 

measure the 

distance between 

the centers of two 

populations of 

similar variability 

using the MAD 

as the unit of 

measure. 
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Sample Problems for Section 7.3 

 

1. The top ten salaries for sports players in the NBA and NFL are shown in histograms below. Answer the 

questions that follow. 

      
a. Which set of data has a higher center? 

b. Which set of data has a larger spread? 

c. How do the two data sets compare in similarities and differences? 

 

 

 

 

 

 

2. For each data set listed below, calculate the center and spread. The write a comparison of the two data 

sets. (data from http://www.math.hope.edu/swanson/data/cellphone.txt) 
Length of Last Phone Call for Males (in seconds) Length of Last Phone Call for Females (in seconds) 

292 653 

360 73 

840 10800 

60 202 

60 58 

900 7 

60 74 

328 75 

217 58 

1565 168 

16 354 

58 600 

22 1560 

98 2220 

73 2100 

537 56 

51 900 

49 481 

1210 60 

15 139 

59 80 

328 72 

8 2820 

1 17 

3 119 
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3. Ms. Christensen gave two of her history classes a test. The following table shows the scores from her 

classes. Find the mean absolute deviation of each. If the MAD is similar for both, find the distance 

between the centers of the two classes. 

 5th Period 6th Period 

90 72 

88 80 

100 91 

98 90 

71 55 

83 52 

92 76 

94 67 

87 75 

78 80 

91 78 

99 83 

60 78 

90 75 

2014 University of Utah Middle School Math Project in partnership with the 

Utah State Office of Education. Licensed under Creative Commons, cc-by. 
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